【題目】已知在菱形ABCD中,對角線AC、BD交于點O,AB=2AO;(1)如圖1,求∠BAC的度數(shù);(2)如圖2,P為菱形ABCD外一點,連接AP、BP、CP,若∠CPB=120°,求證:CP+BP=AP;(3)如圖3,M為菱形ABCD外一點,連接AM、CM、DM,若∠AMD=150°,
CM=2,DM=2,求四邊形ACDM的面積。
【答案】(1)∠BAC=60°;(2)見解析;(3).
【解析】
(1)如圖1中,證明△ABC是等邊三角形即可解決問題.
(2)在PA上截取PH,使得PH=PC,連接CH.證明△PCB≌△HCA(SAS)即可;
(3)如圖3中,作AH⊥DM交DM的延長線于H,延長AC到N,使得CN=AC,連接DN.證明A,N,D,M四點共圓,外接圓的圓心是點C,推出AD=CM= ,解直角三角形求出AH即可解決問題.
解:(1)如圖1中,
∵四邊形ABCD是菱形,
∴AC⊥BD,∠ABD=∠CBD,
∴∠AOB=90°,
∵AB=2OA,
∴∠ABO=30°,
∴∠ABC=60°,
∵BA=BC,
∴△ABC是等邊三角形,
∴∠BAC=60°;
(2)證明:如圖2中,
在PA上截取PH,使得PH=PC,連接CH.
∵∠BPC=120°,∠BAC=60°,
∴∠BPC+∠BAC=180°,
∴A,B,P,C四點共圓,
∴∠APC=∠ABC=60°,
∵PH=PC,
∴△PCH是等邊三角形,
∴PC=CH,∠PCH=∠ACB=60°,
∴∠PCB=∠HCA,
∵CB=CA,CP=CH,
∴△PCB≌△HCA(SAS),
∴PB=AH,
∴PA=PH+AH=PC+PB;
(3)解:如圖3中,作AH⊥DM交DM的延長線于H,延長AC到N,使得CN=AC,連接DN.
∵CA=CD=CN,
∴∠ADN=90°,
∵CD=CN,
∴∠N=∠CDN,
∵∠ACD=60°=∠N+∠CDN,
∴∠N=30°,
∵∠AMD=150°,
∴∠N+∠AMD=180°,
∴A,N,D,M四點共圓,外接圓的圓心是點C,
∴CA=CD=AD=CM=,
在Rt△AHM中,∵∠AMH=30°,
∴MH=AH,設AH=x,則HM=x,
在Rt△ADH中,∵AD2=AH2+DH2,
∴28=x2+(x+2)2,
解得x=或-2(舍棄),
∴AH=,
∴S四邊形ACDM=S△ACD+S△ADM=×+×2×=.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,,求的度數(shù). (提示:作).
(2)如圖2,,當點在線段上運動時,,求與、之間的數(shù)量關系,并說明理由.
(3)在(2)的條件下,如果點在射線上運動,請你直接寫出與、之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下列解題過程,然后解答問題(1)、(2)
解方程:|x+3|=2.
當x+30時,原方程可化為:x+3=2,解得x=1;
當x+3<0時,原方程可化為:x+3=2,解得x=5.
所以原方程的解是x=1,x=5.
(1)解方程:|3x1|5=0;
(2)探究:當b為何值時,方程|x2|=b+1①無解;②只有一個解;③有兩個解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,射線AM⊥AB,點D在AM上,連接OD交圓O于點E,過點D作DC=DA交圓O于點C(A、C不重合),連接OC、BC、CE.
(1)求證:CD是⊙O的切線;
(2)若圓O的直徑等于2,填空:
①當AD= 時,四邊形OADC是正方形;
②當AD= 時,四邊形OECB是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某機動車出發(fā)前油箱內有42升油,行駛若干小時后,途中在加油站加油若干升,油箱中余油量Q(升)與行駛時間t(時)之間的函數(shù)關系如圖,回答下列問題(1)機動車行駛________小時后加油,中途加油_______升;(2)求加油前油箱剩余油量Q與行駛時間t的函數(shù)關系,并直接寫出自變量t的取值范圍;(3)如果加油站距目的地還有230千米,車速為40千米/時,要到達目的地,油箱中的油是否夠用?請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足=AD,連接CE并延長交AD于點F,連接AE,過點B作于點G,延長BG交AD于點H.在下列結論中:①;②;③ . 其中不正確的結論有( )
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h,如圖是甲乙兩車行駛的距離y(km)與時間x(h)的函數(shù)圖象.
(1)直接寫出圖中m,a的值;
(2)求出甲車行駛路程y(km)與時間x (h)的函數(shù)解析式,并寫出相應的x的取值范圍;
(3)當乙車出發(fā)多長時間后,兩車恰好相距40km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b(k≠0)的圖象過點(0,2),且與兩坐標軸圍成的三角形面積為2,求此一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市電話撥號上網(wǎng)有兩種收費方式,用戶可以任選其一:
:計時制:0. 03元/分. :38元/月(限一部個人住宅電話上網(wǎng)).
此外,每一種上網(wǎng)方式都得加收通信費0. 01元/分. 某用戶某月上網(wǎng)時間為小時,
(1)若按照方式收費為_____元(用含的代數(shù)式表示),若按照方式收費為_____元(用含的代數(shù)式表示);
(2)若小時,通過計算采用哪種方式較為合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com