【題目】如圖,將量角器和含角的一塊直角三角板緊靠著放在同一平面內(nèi),使在一條直線上,且,過點(diǎn)作量角器圓弧所在圓的切線,切點(diǎn)為,如果,則的長(zhǎng)是________

【答案】

【解析】

首先設(shè)半圓的圓心為O,連接OE,OA,根據(jù)“30°角所對(duì)的直角邊為斜邊的一半”,得AB=2BC=6cm,根據(jù)題意可知AC是線段OB的垂直平分線,即可求得∠AOC=∠ABC=60°,又由AE是切線,易證得Rt△AOE≌Rt△AOC,進(jìn)而求得∠AOE的度數(shù),然后根據(jù)弧長(zhǎng)公式即可求得答案.

設(shè)半圓的圓心為O,連接OE,OA,

Rt△ABC中,∠BAC=30°,

∴AB=2BC=6cm,
∵CD=2OC=2BC=6cm,
∴OC=BC=3cm,
∵∠ACB=90°,即AC⊥OB,
∴OA=BA,
∴∠AOC=∠ABC,
∵∠BAC=30°,
∴∠AOC=∠ABC=60°,
∵AE是切線,
∴∠AEO=90°,
∴∠AEO=∠ACO=90°,
Rt△AOERt△AOC中,
,
∴Rt△AOE≌Rt△AOC(HL),
∴∠AOE=∠AOC=60°,
∴∠EOD=180°-∠AOE-∠AOC=60°,

的長(zhǎng)是.

故答案為:π.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△CEF均為等腰直角三角形,E在△ABC內(nèi),∠CAE+∠CBE=90°,連接BF.

  (1)求證:△CAE∽△CBF

(2)若BE=1,AE=2,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC△CDE均為等腰直角三角形,點(diǎn)B,C,D在一條直線上,點(diǎn)MAE的中點(diǎn),下列結(jié)論:①tan∠AEC=②SABC+SCDE≧SACE;③BM⊥DM④BM=DM,正確結(jié)論的個(gè)數(shù)是( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:

①∠EBG=45°; ②△DEF∽△ABG;

③S△ABG=S△FGH; ④AG+DF=FG.

其中正確的是_____.(填寫正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國(guó)早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量小雁塔的高度,由于觀測(cè)點(diǎn)與小雁塔底部間的距離不易測(cè)量,因此經(jīng)過研究需要進(jìn)行兩次測(cè)量,于是在陽光下,他們首先利用影長(zhǎng)進(jìn)行測(cè)量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測(cè)得此時(shí)木棒的影長(zhǎng)DE=2.4米;然后,小希在BD的延長(zhǎng)線上找出一點(diǎn)F,使得A、C、F三點(diǎn)在同一直線上,并測(cè)得DF=2.5米.已知圖中所有點(diǎn)均在同一平面內(nèi),木棒高CD=1.72米,ABBF,CDBF,試根據(jù)以上測(cè)量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)木制的棱長(zhǎng)為3的正方體的表面涂上顏色,將它的棱三等分,然后從等分點(diǎn)把正方體鋸開,得到27個(gè)棱長(zhǎng)為l的小正方體,將這些小正方體充分混合后,裝入口袋,從這個(gè)口袋中任意取出一個(gè)小正方體,則這個(gè)小正方體的表面恰好涂有兩面顏色的概率是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解材料一:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫梯形,其中平行的兩邊叫梯形的底邊,不平行的兩邊叫梯形的底邊,不平行的兩邊叫梯形的腰,連接梯形兩腰中點(diǎn)的線段叫梯形的中位線.梯形的中位線具有以下性質(zhì):梯形的中位線平行于兩底和,并且等于兩底和的一半.

如圖(1):在梯形ABCD中:AD∥BC,

∵E、FAB、CD的中點(diǎn),∴EF∥AD∥BC,EF=AD+BC

材料二:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊

如圖(2):在△ABC中:∵EAB的中點(diǎn),EF∥BC

∴FAC的中點(diǎn)

請(qǐng)你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解答下列問題.

如圖(3)在梯形ABCD中,AD∥BC,AC⊥BDO,E、F分別為AB、CD的中點(diǎn),∠DBC=30°

1)求證:EF=AC;

2)若OD=OC=5,求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,已知ABAD2,BC3CD1,∠A90°.

1)求BD的長(zhǎng);

2)求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C=90°,AC=6,BC=8DAB的中點(diǎn),E、F分別是AC、BC上兩點(diǎn),且EDFD

1)如圖1,若EAC中點(diǎn),則BF=______EF=______,AE2+BF2______EF2(填“>,<=”);

2)如圖2,若點(diǎn)EAC邊上任意一點(diǎn),AE2+BF2_____EF2(填“>,<=”),請(qǐng)說明理由;

3)若點(diǎn)ECA延長(zhǎng)上,(2)中三條線段之間的關(guān)系是否成立?請(qǐng)畫圖說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案