【題目】某課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃,其中一邊靠墻,另三邊用長(zhǎng)為米的籬笆圍成,已知墻長(zhǎng)為米(如圖所示),設(shè)這個(gè)苗圃垂直于墻的一邊的長(zhǎng)為米.
(1)垂直于墻的一邊邊的長(zhǎng)為多少米時(shí),這個(gè)苗圃的面積最大,并求出這個(gè)最大值;
(2)當(dāng)這個(gè)苗圃的面積不小于平方米時(shí),試結(jié)合函數(shù)圖象,直接寫出的取值范圍.
【答案】當(dāng)垂直于墻的一邊的長(zhǎng)為6米時(shí),這個(gè)苗圃的面積最大,最大值為72平方米;
【解析】
(1)設(shè)矩形苗圃的面積為S,根據(jù)矩形面積公式求出S與x的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì),即可求得這個(gè)苗圃的面積最大值;
(2)求出苗圃的面積等于平方米時(shí)x的值,根據(jù)圖象,即可求得苗圃的面積不小于平方米時(shí)x的取值范圍.
解:(1)設(shè)矩形苗圃的面積為S,
由于這個(gè)苗圃垂直于墻的一邊的長(zhǎng)為米,則寬為(24-2x)米,
∴,
∴當(dāng)x=6時(shí),S取最大值72,且符合題意,
故當(dāng)垂直于墻的一邊的長(zhǎng)為6米時(shí),這個(gè)苗圃的面積最大,最大值為72平方米;
(2)當(dāng)苗圃的面積等于平方米時(shí),即,
解得:x1=4,x2=8,
由函數(shù)圖像可得,當(dāng)這個(gè)苗圃的面積不小于平方米時(shí),x的取值范圍為4≤x≤8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,.
(1)經(jīng)過A、B、C三點(diǎn)的圓弧所在圓的圓心M的坐標(biāo)為________.
(2)點(diǎn)D坐標(biāo)為,連接CD,判斷直線CD與⊙M的位置關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中,裝有2個(gè)白球,1個(gè)紅球,1個(gè)黃球,這些球除顏色外都相同.請(qǐng)用列表法或畫樹形圖法求下列事件的概率:
(1)攪勻后從中任意摸出1個(gè)球,恰好是白球.
(2)攪勻后從中任意摸出2個(gè)球,2個(gè)都是白球.
(3)再放入幾個(gè)除顏色外都相同的黑球,攪勻后從中任意摸出1個(gè)球,恰好是黑球的概率為,求放入了幾個(gè)黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線頂點(diǎn)為C(1,2),且與直線y=x交于點(diǎn)B(,);點(diǎn)P為拋物線上O,B兩點(diǎn)之間一個(gè)動(dòng)點(diǎn)(不與O,B兩點(diǎn)重合),過P作PQ∥y軸交線段OB于點(diǎn)Q.
(1)求拋物線的解析式;
(2)當(dāng)PQ的長(zhǎng)度為最大值時(shí),求點(diǎn)Q的坐標(biāo);
(3)點(diǎn)M為拋物線上O,B兩點(diǎn)之間一個(gè)動(dòng)點(diǎn)(不與O,B兩點(diǎn)重合),點(diǎn)N為線段OB上一個(gè)動(dòng)點(diǎn);當(dāng)四邊形PQNM為平行四邊形,且PN⊥OB時(shí),請(qǐng)直接寫出Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,AB是直徑,P為AB上一點(diǎn),過點(diǎn)P作弦MN,°.
(1)若AP=2,BP=6,求MN的長(zhǎng).
(2)若MP=3 ;NP=5,求AB的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC、ED所對(duì)的圓心角分別是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°.求點(diǎn)A到弦BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱為格點(diǎn)三角形,圖中的就是格點(diǎn)三角形.在建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為.
(1)把向左平移8格后得到,在坐標(biāo)系方格紙中畫出的圖形并直接寫出點(diǎn)的坐標(biāo)為____;
(2)把繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)后得到,在坐標(biāo)系方格紙中畫出的圖形并直接寫出點(diǎn)的坐標(biāo)為____________;
(3)在現(xiàn)有坐標(biāo)系的方格紙中把以點(diǎn)為位似中心放大,使放大前后對(duì)應(yīng)邊長(zhǎng)的比為,畫出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)在平面直角坐標(biāo)系中,用五點(diǎn)法畫出該二次函數(shù)的圖象;
(2)根據(jù)圖象回答:
①當(dāng)自變量x的取值范圍滿足什么條件時(shí),y<0?
②當(dāng)0≤x<3時(shí),y的取值范圍是多少?
x | … | … | |||||
y | … | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】豆豆同學(xué)上周末對(duì)萬州西山鐘樓(AB)的高度進(jìn)行了測(cè)量.如圖,他站在點(diǎn) D 處測(cè)得西山鐘樓頂部點(diǎn) A 的仰角為 67°.然后他從點(diǎn) D 沿著坡度為 i=1:的斜坡 DF 方向走 20 米到達(dá)點(diǎn) F,此時(shí)測(cè)得建筑物頂部點(diǎn) A 的仰角為 45°.已知該同學(xué)的視線距地面高度為 1.6 米(即 CD=EF=1.6 米),圖 中所有的點(diǎn)均在同一平面內(nèi),點(diǎn) B、D、G 在同一條直線上,點(diǎn) E、F、G 在同一條直線上,AB、CD、EF 均垂直于 BG.則西山鐘樓 AB 的高約為( )(參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)
A.17.4 米B.36.8 米C.48.8 米D.50.2 米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com