(2012•南通)單項(xiàng)式3x2y的系數(shù)為
3
3
分析:把原題單項(xiàng)式變?yōu)閿?shù)字因式與字母因式的積,其中數(shù)字因式即為單項(xiàng)式的系數(shù).
解答:解:3x2y=3•x2y,其中數(shù)字因式為3,
則單項(xiàng)式的系數(shù)為3.
故答案為:3.
點(diǎn)評(píng):本題考查了單項(xiàng)式的系數(shù),確定單項(xiàng)式的系數(shù)時(shí),把一個(gè)單項(xiàng)式分解成數(shù)字因數(shù)和字母因式的積,是找準(zhǔn)單項(xiàng)式的系數(shù)的關(guān)鍵.找出單項(xiàng)式的系數(shù)的規(guī)律也是解決此類(lèi)問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南通)如圖△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點(diǎn),點(diǎn)P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q同時(shí)以1厘米/秒的速度從D出發(fā),沿DB勻速向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)設(shè)點(diǎn)M在AC上,四邊形PQCM為平行四邊形.
①若a=
52
,求PQ的長(zhǎng);
②是否存在實(shí)數(shù)a,使得點(diǎn)P在∠ACB的平分線上?若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南通)甲.乙兩地距離300km,一輛貨車(chē)和一輛轎車(chē)先后從甲地出發(fā)駛向乙地.如圖,線段OA表示貨車(chē)離甲地的距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車(chē)離甲地的距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,根據(jù)圖象,解答下列問(wèn)題:
(1)線段CD表示轎車(chē)在途中停留了
0.5
0.5
h;
(2)求線段DE對(duì)應(yīng)的函數(shù)解析式;
(3)求轎車(chē)從甲地出發(fā)后經(jīng)過(guò)多長(zhǎng)時(shí)間追上貨車(chē).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南通)如圖,梯形ABCD中,AB∥DC,∠A+∠B=90°,AB=7cm,BC=3cm,AD=4cm,則CD=
2
2
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南通二模)一輛快車(chē)從甲地駛往乙地,一輛慢車(chē)從乙地駛往甲地,兩車(chē)同時(shí)出發(fā),勻速行駛.設(shè)快車(chē)行駛的時(shí)間為x(h),兩車(chē)之間的距離為y(km),圖中的折線表示從兩車(chē)出發(fā)至快車(chē)到達(dá)乙地過(guò)程中y與x之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象進(jìn)行以下探究:
信息讀取
(1)甲、乙兩地之間的距離為
280
280
km;圖中點(diǎn)B的實(shí)際意義是
兩車(chē)相遇
兩車(chē)相遇
;
圖象理解:
(2)已知兩車(chē)相遇時(shí)快車(chē)比慢車(chē)多行駛40km,若快車(chē)從甲地到達(dá)乙地所需時(shí)間為t h,求t的值;
問(wèn)題解決:
(3)若快車(chē)到達(dá)乙地后立刻返回甲地,慢車(chē)到達(dá)甲地后停止行駛,請(qǐng)你在圖中畫(huà)出快車(chē)從乙地返回到甲地過(guò)程中y關(guān)于x的函數(shù)的大致圖象(溫馨提示:請(qǐng)畫(huà)在答題卡相對(duì)應(yīng)的圖上).

查看答案和解析>>

同步練習(xí)冊(cè)答案