(2005•臺(tái)州)如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),OP交AB于點(diǎn)D,交⊙O于點(diǎn)C,在線段AB、PA、PB、PC、CD中,已知其中兩條線段的長,但還無法計(jì)算出⊙O直徑的兩條線段是( )

A.AB,CD
B.PA,PC
C.PA,AB
D.PA,PB
【答案】分析:根據(jù)勾股定理和射影定理求解.
解答:解:A、構(gòu)造一個(gè)由半徑、半弦、弦心距組成的直角三角形,根據(jù)垂徑定理以及勾股定理即可計(jì)算;
B、根據(jù)切割線定理即可計(jì)算;
C、首先根據(jù)垂徑定理計(jì)算AD的長,再根據(jù)勾股定理計(jì)算PD的長,連接OA,根據(jù)射影定理計(jì)算OD的長,最后根據(jù)勾股定理即可計(jì)算其半徑;
D、根據(jù)切線長定理,得PA=PB.相當(dāng)于只給了一條線段的長,無法計(jì)算出半徑的長.
故選D.
點(diǎn)評(píng):綜合運(yùn)用垂徑定理、勾股定理、切割線定理、射影定理等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2005•臺(tái)州)如圖,在平面直角坐標(biāo)系內(nèi),⊙C與y軸相切于D點(diǎn),與x軸相交于A(2,0)、B(8,0)兩點(diǎn),圓心C在第四象限.
(1)求點(diǎn)C的坐標(biāo);
(2)連接BC并延長交⊙C于另一點(diǎn)E,若線段BE上有一點(diǎn)P,使得AB2=BP•BE,能否推出AP⊥BE?請(qǐng)給出你的結(jié)論,并說明理由;
(3)在直線BE上是否存在點(diǎn)Q,使得AQ2=BQ•EQ?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,也請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(13)(解析版) 題型:解答題

(2005•臺(tái)州)如圖,在平面直角坐標(biāo)系內(nèi),⊙C與y軸相切于D點(diǎn),與x軸相交于A(2,0)、B(8,0)兩點(diǎn),圓心C在第四象限.
(1)求點(diǎn)C的坐標(biāo);
(2)連接BC并延長交⊙C于另一點(diǎn)E,若線段BE上有一點(diǎn)P,使得AB2=BP•BE,能否推出AP⊥BE?請(qǐng)給出你的結(jié)論,并說明理由;
(3)在直線BE上是否存在點(diǎn)Q,使得AQ2=BQ•EQ?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,也請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(13)(解析版) 題型:解答題

(2005•臺(tái)州)如圖,在平面直角坐標(biāo)系內(nèi),⊙C與y軸相切于D點(diǎn),與x軸相交于A(2,0)、B(8,0)兩點(diǎn),圓心C在第四象限.
(1)求點(diǎn)C的坐標(biāo);
(2)連接BC并延長交⊙C于另一點(diǎn)E,若線段BE上有一點(diǎn)P,使得AB2=BP•BE,能否推出AP⊥BE?請(qǐng)給出你的結(jié)論,并說明理由;
(3)在直線BE上是否存在點(diǎn)Q,使得AQ2=BQ•EQ?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,也請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2005•臺(tái)州)如圖,在平面直角坐標(biāo)系內(nèi),⊙C與y軸相切于D點(diǎn),與x軸相交于A(2,0)、B(8,0)兩點(diǎn),圓心C在第四象限.
(1)求點(diǎn)C的坐標(biāo);
(2)連接BC并延長交⊙C于另一點(diǎn)E,若線段BE上有一點(diǎn)P,使得AB2=BP•BE,能否推出AP⊥BE?請(qǐng)給出你的結(jié)論,并說明理由;
(3)在直線BE上是否存在點(diǎn)Q,使得AQ2=BQ•EQ?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,也請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年浙江省臺(tái)州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•臺(tái)州)如圖,在平面直角坐標(biāo)系內(nèi),⊙C與y軸相切于D點(diǎn),與x軸相交于A(2,0)、B(8,0)兩點(diǎn),圓心C在第四象限.
(1)求點(diǎn)C的坐標(biāo);
(2)連接BC并延長交⊙C于另一點(diǎn)E,若線段BE上有一點(diǎn)P,使得AB2=BP•BE,能否推出AP⊥BE?請(qǐng)給出你的結(jié)論,并說明理由;
(3)在直線BE上是否存在點(diǎn)Q,使得AQ2=BQ•EQ?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,也請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案