【題目】某公司欲將件產(chǎn)品全部運(yùn)往甲,乙,丙三地銷售(每地均有產(chǎn)品銷售),運(yùn)費(fèi)分別為40元/件,24元/件,7元/件,且要求運(yùn)往乙地的件數(shù)是運(yùn)往甲地件數(shù)的3倍,設(shè)安排(為正整數(shù))件產(chǎn)品運(yùn)往甲地.
(1)根據(jù)信息填表:
甲地 | 乙地 | 丙地 | |
產(chǎn)品件數(shù)(件) | |||
運(yùn)費(fèi)(元) |
(2)若總運(yùn)費(fèi)為6300元,求與的函數(shù)關(guān)系式并求出的最小值.
【答案】(1)見解析;(2);當(dāng)時(shí),取得最小值,.
【解析】
(1)根據(jù)總產(chǎn)品件數(shù)為m,可求得運(yùn)往丙地的產(chǎn)品件數(shù);然后根據(jù)運(yùn)費(fèi)=產(chǎn)品件數(shù)×運(yùn)費(fèi)單價(jià)可得出運(yùn)往乙地、丙地的運(yùn)費(fèi);
(2)根據(jù)總運(yùn)費(fèi)列出算式并用x表示出m,再根據(jù)m不小于運(yùn)往甲、乙兩地的件數(shù)和求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性求出m的最小值即可.
解:(1)表格如下:
甲地 | 乙地 | 丙地 | |
產(chǎn)品件數(shù)(件) | |||
運(yùn)費(fèi)(元) |
(2)由題意得:,
化簡(jiǎn)得:,
∴.
∵,
∴,
∴.
∵為正整數(shù),-12<0,
∴m隨x的增大而減小,
∴當(dāng)時(shí),取得最小值,此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)P(0,2),以P為圓心,OP為半徑的半圓與y軸的另一個(gè)交點(diǎn)是C,一次函數(shù)(m為實(shí)數(shù))的圖象為直線l,l分別交x軸,y軸于A,B兩點(diǎn),如圖1.
(1)B點(diǎn)坐標(biāo)是 (用含m的代數(shù)式表示),∠ABO= °.
(2)若點(diǎn)N是直線AB與半圓CO的一個(gè)公共點(diǎn)(兩個(gè)公共點(diǎn)時(shí),N為右側(cè)一點(diǎn)),過點(diǎn)N作⊙P的切線交x軸于點(diǎn)E,如圖2.是否存在這樣的m的值,使得△EBN是直角三角形.若存在,求出m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明遇到這樣一個(gè)問題:如圖,矩形紙片ABCD,AB=2,BC=3,現(xiàn)要求將矩形紙片剪兩刀后拼成一個(gè)與之面積相等的正方形,小明嘗試給出了下面四種剪的方法,如圖①②③④,圖中BE=.其中剪法正確的是( 。
A.①②B.①③C.②③D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+3的圖象分別與y軸,x軸交于點(diǎn)A,B,點(diǎn)P從點(diǎn)B出發(fā),沿射線BA以每秒1個(gè)單位的速度運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)點(diǎn)P在運(yùn)動(dòng)過程中,若某一時(shí)刻,△OPA的面積為3,求此時(shí)P的坐標(biāo);
(2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△AOP為等腰三角形?請(qǐng)直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加( 。﹎.
A. 1 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A、C,以OA、OC為邊在第一象限內(nèi)作長(zhǎng)方形OABC.
(1)將△ABC沿B′D對(duì)折,使得點(diǎn)A與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式;
(2)若在x軸上存在點(diǎn)P,使△ADP為等腰三角形,求出符合條件的點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是三種電話計(jì)費(fèi)方式:
月使用費(fèi) (元) | 主叫限定時(shí)間 (分鐘) | 主叫超時(shí)收費(fèi) (元/分鐘) | 被叫 | |
方式一 | 18 | 60 | 0.2 | 免費(fèi) |
方式二 | 28 | 120 | 0.2 | 免費(fèi) |
方式三 | 48 | 240 | 0.2 | 免費(fèi) |
說明:月使用費(fèi)固定收取,主叫不超限定時(shí)間不再收費(fèi),主叫超時(shí)部分加收超時(shí)費(fèi).
設(shè)一個(gè)月內(nèi)主叫通話分鐘(為正整數(shù)).
(1)當(dāng)時(shí),按方式一計(jì)費(fèi)為______元;按方式二計(jì)費(fèi)為______元.
(2)當(dāng)時(shí),是否存在某一時(shí)間,使方式二與方式三的計(jì)費(fèi)結(jié)果相等?若存在,請(qǐng)求出對(duì)應(yīng)的值,若不存在,請(qǐng)說明理由.
(3)當(dāng)時(shí),哪一種收費(fèi)方式最省錢?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)矩形的短邊與長(zhǎng)邊的比值為(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形.
操作:請(qǐng)你在如圖所示的黃金矩形中,以短邊為一邊作正方形;
探究:在中的四邊形是不是黃金矩形?若是,請(qǐng)予以證明;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com