有一塊直角三角形木板如圖所示,已知∠C=90°,AB=5cm,BC=3cm,根據(jù)需要,要把它加工成一個面積最大的正方形木板,設(shè)計一個方案,應(yīng)怎樣裁,才能使正方形木板面積最大?并求出這個正方形木板的邊長.
分析:方案一:根據(jù)題意畫出圖形,作CM⊥AB于M,交DE于N.設(shè)正方形邊長為xcm,再根據(jù)直角三角形的面積得出CM的長,利用相似三角形的判定定理即可得出△CDE∽△CAB,再根據(jù)相似三角形的對應(yīng)邊成比例即可求出正方形的邊長;
方案二:如圖(2)設(shè)正方形邊長為ycm,利用相似三角形的判定定理即可得出△BFE∽△BCA,再根據(jù)相似三角形的對應(yīng)邊成比例即可求出正方形的邊長;把兩方案中正方形的邊長進行比較即可得出結(jié)論.
解答:精英家教網(wǎng)解:方案一:如圖(1),
作CM⊥AB于M,交DE于N.
設(shè)正方形邊長為xcm.
由S△ABC=
1
2
AC•BC=
1
2
AB•CM
知:CM=
AC•BC
AB
=
12
5
(1分)
∵DE∥AB
∴△CDE∽△CAB,(2分)
即:
CN
CM
=
DE
AB

12
5
-x
12
5
=
x
5

∴x=
60
37
(3分)
方案二:如圖(2)設(shè)正方形邊長為ycm.
∵EF∥AC
∴△BFE∽△BCA,(4分)
BF
BC
=
EF
AC

即 
3-y
3
=
y
4

∴y=
12
7
=
60
35
(5分)
∵x<y,
∴方案二裁出的正方形的面積最大.(6分)
這時正方形的邊長是
12
7
cm.(7分)
點評:本題考查的是相似三角形在實際生活中的應(yīng)用,能根據(jù)題意畫出圖形,作出輔助線,再根據(jù)相似三角形的判定定理及性質(zhì)進行解答即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:江蘇省揚州市江都花蕩中學(xué)2011-2012學(xué)年八年級下學(xué)期期末考試數(shù)學(xué)試題 題型:044

有一塊直角三角形木板如圖所示,已知∠C=90°,BC=3 cm,AC=4 cm.根據(jù)需要,要把它加工成一個正方形木板,小明和小麗分別設(shè)計了如圖1和圖2的兩種方法,哪一塊正方形木板面積更大?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇揚州江都花蕩中學(xué)八年級下期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

有一塊直角三角形木板如圖所示,已知∠C=90°,BC=3cm, AC=4cm.根據(jù)需要,要把它加工成一個正方形木板,小明和小麗分別設(shè)計了如圖1和圖2的兩種方法,哪一塊正方形木板面積更大?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇揚州江都花蕩中學(xué)八年級下期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

有一塊直角三角形木板如圖所示,已知∠C=90°,BC=3cm, AC=4cm.根據(jù)需要,要把它加工成一個正方形木板,小明和小麗分別設(shè)計了如圖1和圖2的兩種方法,哪一塊正方形木板面積更大?請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

有一塊直角三角形木板如圖所示,已知∠C=90°,AB=5cm,BC=3cm,根據(jù)需要,要把它加工成一個面積最大的正方形木板,設(shè)計一個方案,應(yīng)怎樣裁,才能使正方形木板面積最大?并求出這個正方形木板的邊長.

查看答案和解析>>

同步練習(xí)冊答案