如圖,已知∠BAC=130°,AB=AC,AC的垂直平分線交BC于點(diǎn)D,則∠ADB=
50
50
度.
分析:根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AD=CD,再根據(jù)等邊對(duì)等角可得∠C=∠CAD,∠B=∠C,然后利用三角形內(nèi)角和定理列式求出∠C,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.
解答:解:∵DE是AC的垂直平分線,
∴AD=CD,
∴∠C=∠CAD,
∵AB=AC,
∴∠B=∠C,
在△ABC中,∠ABC+∠B+∠C=180°,
∴130°+2∠C=180°,
解得∠C=25°,
∴∠ADB=∠CAD+∠C=25°+25°=50°.
故答案為:50.
點(diǎn)評(píng):本題考查了線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),等腰三角形的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并利用三角形的內(nèi)角和定理列出方程是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠BAC=90°,△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ADE,恰好D在BC上,連接CE.
(1)∠BAE與∠DAC有何關(guān)系?并說明理由;
(2)線段BC與CE在位置上有何關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠BAC的平分線與△ABC的邊BC和外接圓分別相交于D、E.
求證:AB•AC=AD•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠BAC=70°,D是△ABC的邊BC上的一點(diǎn),且∠CAD=∠C,∠ADB=80°.求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠BAC=∠DAC,要利用“ASA”判定△ABC≌△ADC,則應(yīng)添加的條件是
∠ACB=∠ACD
∠ACB=∠ACD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠BAC=40°,∠DAC=10°,若將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)
30
30
度可使得△ABC與△ADE重合.

查看答案和解析>>

同步練習(xí)冊(cè)答案