如圖,?ABCD中,E是CD的延長(zhǎng)線(xiàn)上一點(diǎn),BE與AD交于點(diǎn)F,DE=
12
CD.
(1)求證:△ABF∽△CEB;       
(2)DF=3,求BC的長(zhǎng).
分析:(1)根據(jù)平行四邊形對(duì)角相等可得∠A=∠C,對(duì)邊平行可得AB∥CD,根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等得到∠ABF=∠E,然后利用兩角對(duì)應(yīng)相等,兩三角形相似即可證明.
(2)由相似三角形△EFD∽△EBC的對(duì)應(yīng)邊成比例來(lái)求BC的長(zhǎng)度.
解答:(1)證明:∵四邊形ABCD是平行四邊形,
∴∠A=∠C,AB∥CD,
∵AB∥CD,
∴∠ABF=∠E,
在△ABF和△CEB中,∠A=∠C,∠ABF=∠E,
∴△ABF∽△CEB;

(2)解:∵DE=
1
2
CD,
∴EC=3DE.
如圖,∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴△EFD∽△EBC,
ED
EC
=
DF
BC
,即
1
3
=
3
BC
,
則BC=9.
點(diǎn)評(píng):本題主要考查了平行四邊形的性質(zhì),相似三角形的判定,找出對(duì)應(yīng)角相等是證明的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點(diǎn),則圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線(xiàn)AC,BD相交于O點(diǎn),將直線(xiàn)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn),下列說(shuō)法不正確的是(  )
A、當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF一定為平行四邊形
B、在旋轉(zhuǎn)的過(guò)程中,線(xiàn)段AF與EC總相等
C、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形BEDF一定為菱形
D、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長(zhǎng)線(xiàn)上一點(diǎn),BE與AD交于點(diǎn)F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點(diǎn)E是AD的中點(diǎn),延長(zhǎng)CE交BA的延長(zhǎng)線(xiàn)于點(diǎn)F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•浙江)如圖,?ABCD中,對(duì)角線(xiàn)AC和BD交于點(diǎn)O,過(guò)O作OE∥BC交DC于點(diǎn)E,若OE=5cm,則AD的長(zhǎng)為
10
10
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案