【題目】我們應(yīng)該討論一般化、特殊化和類比這些過程本身,他們是獲得發(fā)現(xiàn)的偉大源泉”——喬治·波利亞.

1)觀察猜想

如圖1,在ABC中,CA=CB.點(diǎn)DAC上,點(diǎn)EBC上,且CD=CE.則BEAD的數(shù)量關(guān)系是______,直線BE與直線AD的位置關(guān)系是______;

2)拓展探究

如圖2,在ABCCDE中,CA=CB,CD=CE,.則BEAD的數(shù)量關(guān)系怎樣?直線BE與直線AD的位置關(guān)系怎樣?請(qǐng)說明理由;

3)解決問題

如圖3,在ABC中,CA=CB,,BDABC的角平分線,點(diǎn)MAB的中點(diǎn).點(diǎn)P在射線BD上,連接PM,以點(diǎn)M為中心,將PM逆時(shí)針旋轉(zhuǎn)90°,得到線段MN,請(qǐng)直接寫出點(diǎn)AP,N在同一條直線上時(shí)的值.

【答案】1;(2,理由見解析;(3

【解析】

1)利用等量線段相減的關(guān)系得到BE=AD;由直線BE與直線AD的夾角BEAD;

2)先利用SAS證明,由此得到,再根據(jù)三角形的內(nèi)角和及對(duì)頂角相等的性質(zhì)得到,由此證得;

3)分兩種情況,連接CP,證明△AMN≌△CMP,即可求出∠CPM=ANM,得到答案.

1

CA=CB,CD=CE,

CA-CD=CB-CE,

BE=AD

∵直線BE與直線AD的夾角,

BEAD

故答案為:BE=AD,;

2BE=AD,;

設(shè)直線交于點(diǎn).

,

.

.

.

,

.

;

3)如圖①,連接CM,

CA=CB,

∴△ABC是等腰直角三角形,

MAB的中點(diǎn),

CM=AM=BM,AMC=90,

由旋轉(zhuǎn)得:MN=MP,PMN=90,

∴∠AMN=CMP,MNP=MPN=45

∴△AMN≌△CMP,

∴∠CPM=ANM=180-45=135

如圖②連接CM,

CM=AM,∠AMN=CMP, MN=MP,

∴△AMN≌△CMP,

∴∠CPM=ANM=45.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)中,直線ly=﹣2x+6分別交兩坐標(biāo)于A、B兩點(diǎn),M是級(jí)段AB上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為x,△OMB的面積為S

(1)寫出Sx的函數(shù)關(guān)系式;

(2)當(dāng)△OMB的面積是△OAB面積的時(shí),求點(diǎn)M的坐標(biāo);

(3)當(dāng)△OMB是以OB為底的等腰三角形,求它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BDCF成立.

1當(dāng)ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

2當(dāng)ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)DB交CF于點(diǎn)H.

求證:BDCF;

當(dāng)AB=2,AD=3時(shí),求線段DH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂獎(jiǎng).

(1)從獲得美術(shù)獎(jiǎng)和音樂獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;

(2)分別從獲得美術(shù)獎(jiǎng)、音樂獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是邊長(zhǎng)為1的正方形ABCD的對(duì)角線,BE平分∠DBCDC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長(zhǎng)線于點(diǎn)G.

(1)求證:△BCE≌△DCF;

(2)求CF的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一次函數(shù)y=x+6,下列結(jié)論錯(cuò)誤的是(

A. 函數(shù)值隨自變量增大而增大 B. 函數(shù)圖像與軸正方向成45°

C. 函數(shù)圖像不經(jīng)過第四象限 D. 函數(shù)圖像與軸交點(diǎn)坐標(biāo)是(06

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)圖象過點(diǎn),頂點(diǎn)為,則結(jié)論:;②時(shí),函數(shù)的最大值是;③;④;⑤.其中正確的結(jié)論有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角,,點(diǎn)是邊上的一點(diǎn),以為邊作,使

1)過點(diǎn)于點(diǎn),連接(如圖①)

請(qǐng)直接寫出的數(shù)量關(guān)系;

試判斷四邊形的形狀,并證明;

2)若,過點(diǎn)于點(diǎn),連接(如圖),那么(1中的結(jié)論是否任然成立?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案