【題目】“我們應(yīng)該討論一般化、特殊化和類比這些過程本身,他們是獲得發(fā)現(xiàn)的偉大源泉”——喬治·波利亞.
(1)觀察猜想
如圖1,在△ABC中,CA=CB,.點(diǎn)D在AC上,點(diǎn)E在BC上,且CD=CE.則BE與AD的數(shù)量關(guān)系是______,直線BE與直線AD的位置關(guān)系是______;
(2)拓展探究
如圖2,在△ABC和△CDE中,CA=CB,CD=CE,.則BE與AD的數(shù)量關(guān)系怎樣?直線BE與直線AD的位置關(guān)系怎樣?請(qǐng)說明理由;
(3)解決問題
如圖3,在△ABC中,CA=CB,,BD是△ABC的角平分線,點(diǎn)M是AB的中點(diǎn).點(diǎn)P在射線BD上,連接PM,以點(diǎn)M為中心,將PM逆時(shí)針旋轉(zhuǎn)90°,得到線段MN,請(qǐng)直接寫出點(diǎn)A,P,N在同一條直線上時(shí)的值.
【答案】(1);(2),理由見解析;(3)
【解析】
(1)利用等量線段相減的關(guān)系得到BE=AD;由直線BE與直線AD的夾角得BE⊥AD;
(2)先利用SAS證明,由此得到,再根據(jù)三角形的內(nèi)角和及對(duì)頂角相等的性質(zhì)得到,由此證得;
(3)分兩種情況,連接CP,證明△AMN≌△CMP,即可求出∠CPM=∠ANM,得到答案.
(1)
∵CA=CB,CD=CE,
∴CA-CD=CB-CE,
∴BE=AD;
∵直線BE與直線AD的夾角,
∴BE⊥AD;
故答案為:BE=AD,;
(2)BE=AD,;
設(shè)直線交于點(diǎn).
∵,
,
.
.
.
,
.
即;
(3)如圖①,連接CM,
∵CA=CB,,
∴△ABC是等腰直角三角形,
∵M是AB的中點(diǎn),
∴CM=AM=BM,∠AMC=90,
由旋轉(zhuǎn)得:MN=MP,∠PMN=90,
∴∠AMN=∠CMP,∠MNP=∠MPN=45,
∴△AMN≌△CMP,
∴∠CPM=∠ANM=180-45=135;
如圖②連接CM,
∵CM=AM,∠AMN=∠CMP, MN=MP,
∴△AMN≌△CMP,
∴∠CPM=∠ANM=45.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)中,直線l:y=﹣2x+6分別交兩坐標(biāo)于A、B兩點(diǎn),M是級(jí)段AB上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為x,△OMB的面積為S.
(1)寫出S與x的函數(shù)關(guān)系式;
(2)當(dāng)△OMB的面積是△OAB面積的時(shí),求點(diǎn)M的坐標(biāo);
(3)當(dāng)△OMB是以OB為底的等腰三角形,求它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時(shí),求線段DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂獎(jiǎng).
(1)從獲得美術(shù)獎(jiǎng)和音樂獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;
(2)分別從獲得美術(shù)獎(jiǎng)、音樂獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是邊長(zhǎng)為1的正方形ABCD的對(duì)角線,BE平分∠DBC交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長(zhǎng)線于點(diǎn)G.
(1)求證:△BCE≌△DCF;
(2)求CF的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一次函數(shù)y=x+6,下列結(jié)論錯(cuò)誤的是( )
A. 函數(shù)值隨自變量增大而增大 B. 函數(shù)圖像與軸正方向成45°角
C. 函數(shù)圖像不經(jīng)過第四象限 D. 函數(shù)圖像與軸交點(diǎn)坐標(biāo)是(0,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象過點(diǎn),頂點(diǎn)為,則結(jié)論:①;②時(shí),函數(shù)的最大值是;③;④;⑤.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角,,點(diǎn)是邊上的一點(diǎn),以為邊作,使,.
(1)過點(diǎn)作交于點(diǎn),連接(如圖①)
①請(qǐng)直接寫出與的數(shù)量關(guān)系;
②試判斷四邊形的形狀,并證明;
(2)若,過點(diǎn)作交于點(diǎn),連接(如圖②),那么(1)②中的結(jié)論是否任然成立?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com