【題目】已知y是x的一次函數(shù),且當x=﹣4時,y=9;當x=6時,y=﹣1.
(1)求這個一次函數(shù)的解析式;
(2)當x=﹣ 時,函數(shù)y的值;
(3)當y<1時,自變量x取值范圍.

【答案】
(1)解:設這個一次函數(shù)的解析式為y=kx+b(k≠0),

把(﹣4,9)、(6,﹣1)代入y=kx+b中,

,解得:

∴這個一次函數(shù)的解析式為y=﹣x+5


(2)解:當x=﹣ 時,y=﹣(﹣ )+5=
(3)解:∵y=﹣x+5<1,

∴x>4


【解析】(1)設這個一次函數(shù)的解析式為y=kx+b(k≠0),根據(jù)點的坐標利用待定系數(shù)法即可求出一次函數(shù)解析式;(2)將x=﹣ 代入一次函數(shù)解析式中求出y值即可;(3)由y<1可得出關于x的一元一次不等式,解之即可得出結論.
【考點精析】本題主要考查了一次函數(shù)的性質和確定一次函數(shù)的表達式的相關知識點,需要掌握一般地,一次函數(shù)y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小;確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若將一個自然數(shù)各位上的數(shù)字按照從高位數(shù)字到低位數(shù)字排成一列后,后一個人數(shù)減去前一個數(shù)的差是一個常數(shù),則這個數(shù)叫做幸福數(shù)”.如:四位數(shù)2468排成一列后為:2,4,6,8.因為8-6=6-4=4-2=2,且差為2的常數(shù),故2468是一個差為2的四位幸福數(shù)”.又如,9876,6666等也是幸福數(shù)”.

若一個自然數(shù)從左到右各數(shù)位上的數(shù)字和另一個自然數(shù)從右到左各數(shù)位上的數(shù)字完全相同,則稱這兩個數(shù)為三生三世數(shù)”.例如:35799753,87655678,...,都是三生三世數(shù)”.

規(guī)定:把高位數(shù)字為x,差為2的三位幸福數(shù)與它的三生三世數(shù)的和與222的商記為F(x).例如當x=5時,三位幸福數(shù)579,它的三生三世數(shù)975,三位幸福數(shù)與它的三生三世數(shù)的和為:579+975=1554,1554÷222=7,所以F(x)=7.

1)計算:F(1), F(4)

2)已知F(x) =4,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個正方體的各個面涂上紅色或藍色(可以只用一種顏色),則正方體不同的涂色方案總共有( )種

A.6B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副直角三角板按圖11-14擺放,點CEF上,AC經(jīng)過點D.已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°.求∠CDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算中,結果是a6的是(  )
A.a2+a4
B.a2a3
C.a12÷a2
D.(a23

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:已知點Px0,y0)和直線y=kx+b,則點P到直線y=kx+b的距離,可用公式d=計算.

例如:求點P﹣1,2)到直線y=3x+7的距離.

解:因為直線y=3x+7,其中k=3,b=7

所以點P1,2)到直線y=3x+7的距離為:d====

根據(jù)以上材料,解答下列問題:

1)求點P1,﹣1)到直線y=x﹣1的距離;

2)已知⊙Q的圓心Q坐標為(0,5),半徑r2,判斷⊙Q與直線y=x+9的位置關系并說明理由;

(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一組數(shù)據(jù)2,3,4,5,x的方差與另一組數(shù)據(jù)5,6,7,8,9的方差相等,則x的值為( 。
A.1
B.6
C.1或6
D.5或6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,射線OC∠AOB的內(nèi)部,圖中共有3個角:∠AOB,∠AOC∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC∠AOB巧分線.如圖2,若∠MPN=60°,且射線PQ繞點PPN位置開始,以每秒10°的速度逆時針旋轉,當PQPN180°時停止旋轉,旋轉的時間為t秒.若射線PM同時繞點P以每秒的速度逆時針旋轉,并與PQ同時停止,當t=____秒,射線PQ∠MPN巧分線”.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個圓錐的母線長為10,側面展開圖是半圓,則圓錐的側面積是(
A.100π
B.50π
C.20π
D.10π

查看答案和解析>>

同步練習冊答案