【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx-5與x軸交于A(-1,0),B(5,0)兩點,與y軸交于點C.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別交于點F,G,試探究當(dāng)點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標(biāo)及最大面積;
(3)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上是否存在點P,Q,使四邊形PQKM的周長最小,若沒有,說明理由;若有,求出點P,Q的坐標(biāo).
【答案】(1)y=x2-4x-5;(2)H(,),面積最大為;(3)存在,P(,0),Q(0,-).
【解析】
(1)根據(jù)待定系數(shù)法直接求出拋物線解析式即可;
(2)設(shè)H(t,t2﹣4t﹣5),求出直線BC的解析式,即可表示出點F的坐標(biāo),進而求出四邊形CHEF的面積與t的函數(shù)關(guān)系式,利用二次函數(shù)求最值即可;
(3)利用對稱性找出點P,Q的位置,進而求出P,Q的坐標(biāo).
解:(1)∵點A(﹣1,0),B(5,0)在拋物線y=ax2+bx﹣5上,
∴,
解得,
∴拋物線的表達式為y=x2﹣4x﹣5,
(2)設(shè)H(t,t2﹣4t﹣5),
∵CE∥x軸,
∴點E的縱坐標(biāo)為﹣5,
∵E在拋物線上,
∴x2﹣4x﹣5=﹣5,
∴x=0(舍)或x=4,
∴E(4,﹣5),
∴CE=4,
設(shè)直線BC的解析式為y=kx+c
將B(5,0),C(0,﹣5)代入,得
解得:
∴直線BC的解析式為y=x﹣5,
∴F(t,t﹣5),
∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,
∵CE∥x軸,HF∥y軸,
∴CE⊥HF,
∴S四邊形CHEF=CEHF=﹣2(t﹣)2+,
∵-2<0
∴當(dāng)t=時,S四邊形CHEF最大,最大值為
∴H(,﹣);
(3)如圖2,四邊形PQKM的周長=PM+PQ+QK+KM(其中KM為定值)
∵K為拋物線的頂點,y=x2-4x-5=(x-2)2-9
∴K(2,﹣9),
∴K關(guān)于y軸的對稱點K′(﹣2,﹣9),
∵M(4,m)在拋物線上,
∴m=16-16-5=-5
∴M(4,﹣5),
∴點M關(guān)于x軸的對稱點M′(4,5),
連接K′M′,分別交x軸于點P,交y軸于點Q
∴此時PM=PM′,QK=QK′
∴此時四邊形PQKM的周長=PM+PQ+QK+KM= PM′+PQ +QK′+KM=M′K′+KM,根據(jù)兩點之間線段最短,此時四邊形PQKM的周長最小
設(shè)直線K′M′的解析式為y=ex+d
將K′、M′的坐標(biāo)代入,得
解得:
∴直線K′M′的解析式為y=,
當(dāng)y=0時,解得x=;當(dāng)x=0時,解得y=
∴P(,0),Q(0,﹣).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在開展讀書交流活動中全體師生積極捐書.為了解所捐書籍的種類,對部分書籍進行了抽樣調(diào)查,李老師根據(jù)調(diào)查數(shù)據(jù)繪制了如圖所示不完整統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下面問題:
(1)本次抽樣調(diào)查的書籍有多少本?請補全條形統(tǒng)計圖;
(2)求出圖1中表示文學(xué)類書籍的扇形圓心角度數(shù);
(3)本次活動師生共捐書1200本,請估計有多少本科普類書籍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)招募了40位居民參加“眾志成城,抗擊疫情”志愿者服務(wù)活動,對志愿者一天的服務(wù)時長進行調(diào)查,由調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
頻數(shù)分布表
組別 | 時間/小時 | 頻數(shù)/人數(shù) |
A組 | 0≤<1 | 2 |
B組 | 1≤<2 | m |
C組 | 2≤<3 | 10 |
D組 | 3≤<4 | 12 |
E組 | 4≤<5 | 7 |
F組 | ≥5 | 4 |
扇形統(tǒng)計圖
請根據(jù)圖表中的信息解答下列問題:
(1)求頻數(shù)分布表中的的值;
(2)求B組,C組在扇形統(tǒng)計圖中分別對應(yīng)扇形的圓心角的度數(shù),并補全扇形統(tǒng)計圖;
(3)已知F組的志愿者中,只有1名女志愿者.要從該組中選取兩名志愿者分發(fā)生活物資,請用樹狀圖或列表的方法求2名志愿恰好都是男士的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣2,5),與x軸相交于B(﹣1,0),C(3,0)兩點.
(1)求拋物線的函數(shù)表達式;
(2)點D在拋物線的對稱軸上,且位于x軸的上方,將△BCD沿直線BD翻折得到△BC′D,若點C′恰好落在拋物線的對稱軸上,求點C′和點D的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標(biāo)A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當(dāng)1<x<4時,有y2<y1 ,
其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是兩座現(xiàn)代化城市,是一個古城遺址,城在城的北偏東,在城的北偏西,城在城的正東方向,且城與城相距120千米,現(xiàn)在、兩城市修建一條筆直的高速公路.
(1)請你計算公路的長度(結(jié)果保留根號);
(2)若以為圓心,以60千米為半徑的圓形區(qū)域內(nèi)為古跡和地下文物保護區(qū),請你分析公路會不會穿越這個保護區(qū),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A=60°,∠C=75°,AB=8,D、E、F分別在AB、BC、CA上,則△DEF的周長最小值是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,E、F分別是邊CD、AD上動點,AE和BF交于點G.
(1)如圖(1),若E為邊CD的中點,AF=2FD,求AG的長.
(2)如圖(2),若點F在AD上從A向D運動,點E在DC上從D向C運動,兩點同時出發(fā),同時到達各自終點,求在運動過程中,點G運動的路徑長.
(3)如圖(3),若E、F分別是邊CD、AD上的中點,BD與AE交于點H,求∠FBD的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售A,B兩款保溫杯,已知B款保溫杯的銷售單價比A款保溫杯多10元,用480元購買B款保溫杯的數(shù)量與用360元購買A款保溫杯的數(shù)量相同.
(1)A,B兩款保溫杯的銷售單價各是多少元?
(2)由于需求量大,A,B兩款保溫杯很快售完,該超市計劃再次購進這兩款保溫杯共120個,且A款保溫杯的數(shù)量不少于B保溫杯的2倍,A保溫杯的售價不變,B款保溫杯的銷售單價降低10%,兩款保溫杯的進價每個均為20元,應(yīng)如何進貨才能使這批保溫杯的銷售利潤最大,最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com