分析 作點(diǎn)M關(guān)于CB的對(duì)稱點(diǎn)M′連接AM′、M′C,AM′交BC與點(diǎn)P,由等腰三角形三線合一的性質(zhì)可知∠MCP=∠ACP=30°,由軸對(duì)稱的性質(zhì)可知∠MCP=∠M′CP,從而得到∠ACM′=90°,在Rt△AM′C中利用勾股定理可求得AM′的長(zhǎng),從而可求得PA+PM的最小值;如圖2所示;當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),PA+PM有最大值.
解答 解:如圖1所示:作點(diǎn)M關(guān)于CB的對(duì)稱點(diǎn)M′連接AM′、M′C.
∵點(diǎn)M與點(diǎn)M′關(guān)于BC對(duì)稱,
∴MP=M′P,∠MCP=∠M′CP.
∵△ABC是正三角形,M是AB的中點(diǎn),
∴MC=CM′,∠MCP=∠ACP=30°.
∴∠MCP=∠ACP=∠M′CP=30°.
∴CM′=MC=BC×cos30°=$2×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
∴∠ACM′=90°.
∴AM′=$\sqrt{A{M}^{2}+M′{C}^{2}}$=$\sqrt{7}$.
∴PA+PM的最小值是$\sqrt{7}$.
如圖2所示:當(dāng)點(diǎn)P與點(diǎn)C重合時(shí).PM+PA有最大值.
∵PM=$\sqrt{3}$,AP=2,
∴PA+PM=2+$\sqrt{3}$.
故答案為:2+$\sqrt{3}$;$\sqrt{7}$.
點(diǎn)評(píng) 本題主要考查的軸對(duì)稱最短路徑問(wèn)題、勾股定理的應(yīng)用、等腰三角形的性質(zhì),明確當(dāng)點(diǎn)M′、P、A在一條直線上時(shí),PM+PA有最小值,當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),PM+PA有最大值是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x>q或x<-$\frac{2}{3}$ | B. | 無(wú)解 | C. | -$\frac{2}{3}$<x<1 | D. | x>1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com