【題目】把棱長為1cm的若干個小正方體擺放如圖所示的幾何體,然后在露出的表面上涂上顏色不含底面

該幾何體中有多少小正方體?

畫出主視圖.

求出涂上顏色部分的總面積.

【答案】(1)14個;(2)見解析;(3)33cm2

【解析】試題分析:(1)該幾何體中正方體的個數(shù)為最底層的9個,加上第二層的4個,再加上第三層的1個;
(2)主視圖從上往下三行正方形的個數(shù)依次為1,2,3;
(3)涂上顏色部分的總面積可分上面,前面,后面,左面,右面,相加即可.

試題解析:(1)該幾何體中正方體的個數(shù)為9+4+1=14個;
(2);
(3)先算側(cè)面﹣﹣底層12個小面 中層8 上層4個再算上面﹣﹣上層1 中層3個(正方體是可以移動的,不管放在哪里,它壓住的面積總是它的底面積,也就是一個,所以中層是41個)底層(9﹣4)=5個總共33個小面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,ADBE交于點O,ADBC交于點PBECD交于點Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE③AP=BQ;④DE=DP;⑤∠AOB=60°

恒成立的結(jié)論有 .(把你認(rèn)為正確的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=x2﹣4x+4沿y軸向下平移9個單位,所得新拋物線與x軸正半軸交于點B,與y軸交于點C,頂點為D.求:(1)點B、C、D坐標(biāo);(2)BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1 ;

2;

3 ;

4

5;

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2(2m1)xm220有兩個不相等的實數(shù)根,試判斷直線y(2m3)x4m7能否經(jīng)過點A(2,4),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長是2∠DAC的平分線交DC于點E,若點P、Q分別是ADAE上的動點,則DQ+PQ的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線y=3x+3與x軸交于C點,與y軸交于A點,B點在x軸上,OAB是等腰直角三角形.

(1)求過A、B、C三點的拋物線的解析式;

(2)若直線CDAB交拋物線于D點,求D點的坐標(biāo);

(3)若P點是拋物線上的動點,且在第一象限,那么PAB是否有最大面積?若有,求出此時P點的坐標(biāo)和PAB的最大面積;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場出售一批進價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價x(元)與日銷售量y(個)之間有如下關(guān)系:

日銷售單價x(元)

3

4

5

6

日銷售量y(個)

20

15

12

10

1)猜測并確定yx之間的函數(shù)關(guān)系式,并畫出圖象;

2)設(shè)經(jīng)營此賀卡的銷售利潤為W元,求出Wx之間的函數(shù)關(guān)系式,

3)若物價局規(guī)定此賀卡的售價最高不能超過10元/個,請你求出當(dāng)日銷售單價x定為多少時,才能獲得最大日銷售利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點D,DEABAB的延長線于點EDFAC于點F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案