如圖,在等腰三角形ABC中,AB=AC,點D為AC上一點,且AD=BD=BC,則等腰三角形ABC的頂角度數(shù)為
36°
36°
分析:由AB=AC,AD=BD=BC,根據(jù)等角對等邊的知識,可得∠A=∠ABD,∠C=∠ABC=∠CDB,設(shè)∠A=x°,根據(jù)等腰三角形的性質(zhì)得出∠ABD=x°,∠C=∠ABC=∠CDB=2x°,然后根據(jù)三角形的內(nèi)角和定理得出關(guān)于x的方程,解方程即可求得答案.
解答:解:∵AB=AC,AD=BD=BC,
∴∠A=∠ABD,∠C=∠ABC=∠CDB,
設(shè)∠A=x°,則∠ABD=∠A=x°,
∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°
∵∠A+∠C+∠ABC=180°,
∴x+2x+2x=180,
解得x=36.
故等腰三角形ABC的頂角度數(shù)為36°.
故答案為:36°.
點評:本題考查了三角形的內(nèi)角和定理,三角形的外角性質(zhì),等腰三角形的性質(zhì)等知識,此題難度適中,解題的關(guān)鍵是掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖,在等腰三角形ABC中,∠A=90°,∠ABC的平分線BD與AC交于點D,DE⊥BC于點E.求證:AD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長春)感知:如圖①,點E在正方形ABCD的邊BC上,BF⊥AE于點F,DG⊥AE于點G,可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點B、C分別在∠MAN的邊AM、AN上,點E、F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰三角形ABC中,AB=AC=12,BC=8,又BD=3,CE=2.
求證:△ABD∽△BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,在等腰三角形ABC中,AB=AC,AD是BC邊上的中線,∠ABC的平分線BG,交AD于點E,EF⊥AB,垂足為F.
①若∠BAD=20°,則∠C=
70°
70°

②求證:EF=ED.
(2)如圖,△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC.
①求∠ECD的度數(shù);
②若CE=5,求BC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰三角形ABC中,AB=AC,∠A=40°,線段AB的垂直平分線交AB于點D,交AC于點E,連接BE,則∠CBE等于( 。

查看答案和解析>>

同步練習(xí)冊答案