精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D在邊AB上運(yùn)動(dòng),DE平分∠CDB交邊BC于點(diǎn)E,EM⊥BD垂足為M,EN⊥CD垂足為N.
(1)當(dāng)AD=CD時(shí),求證:DE∥AC;
(2)探究:AD為何值時(shí),△BME與△CNE相似?
分析:(1)由相似三角形的判定得出△DEB∽△ACB,從而得出角的關(guān)系,再由AD=CD,得出BD與AB的關(guān)系,即可求的結(jié)論.
(2)此題分兩種情況求解,△BME∽△CNE或△BME∽△ENC,根據(jù)相似三角形的性質(zhì)即可求得.
解答:(1)證明:∵AD=CD,
∴∠DAC=∠DCA,
∴∠BDC=2∠DAC,
∵DE是∠BDC的平分線,
∴∠BDC=2∠BDE,
∴∠DAC=∠BDE,
∴DE∥AC,

(2)解:(I)當(dāng)△BME∽△CNE時(shí),得∠MBE=∠NCE,
∴BD=DC,
∵DE平分∠BDC,
∴DE⊥BC,BE=EC,
又∠ACB=90°,
∴DE∥AC,
BE
BC
=
BD
AB
即BD=
1
2
AB=
1
2
AC2+BC2
=5,
∴AD=5,
(II)當(dāng)△BME∽△ENC時(shí),得∠EBM=∠CEN,
∴EN∥BD,
∵EN⊥CD,
∴BD⊥CD即CD是△ABC斜邊上的高,
由三角形面積公式得AB•CD=AC•BC,
∴CD=
24
5
,
∴AD=
AC2-CD2
=
18
5
,
綜上,當(dāng)AD=5或
18
5
時(shí),△BME與△CNE相似.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、角平分線的性質(zhì)和勾股定理,解題時(shí)要注意數(shù)形結(jié)合思想的應(yīng)用,要注意不規(guī)則圖形的面積的求解方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫(huà)出符合條件的圖形.連接EF后,寫(xiě)出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案