拋物線與x軸的交點坐標(biāo)為________個,分別為________.當(dāng)x=________時,y=0;當(dāng)x________時,y<0;當(dāng)x________時,y>0.

答案:
解析:

2,(-2,0)、(4,0),-2或4,-2<x<4,x>4或x<-2


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)在平面直角坐標(biāo)系中,拋物線過原點O,且與x軸交于另一點A(A在O右側(cè)),頂點為B.艾思軻同學(xué)用一把寬3cm的矩形直尺對拋物線進行如下測量:(1)量得OA=3cm,(2)當(dāng)把直尺的左邊與拋物線的對稱抽重合,使得直尺左下端點與拋物線的頂點重合時(如圖1),測得拋物線與直尺右邊的交點C的刻度讀數(shù)為4.5cm.
艾思軻同學(xué)將A的坐標(biāo)記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對稱軸上是否存在使△ACD周長最小的點D;
(4)然后又將圖中的直尺(足夠長)沿水平方向向右平移到點A的右邊(如圖2),直尺的兩邊交x軸于點H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長度是否存在函數(shù)關(guān)系.
同學(xué):如上述(3)(4)結(jié)論存在,請你幫艾思軻同學(xué)一起完成,如上述(3)(4)結(jié)論不存在,請你告訴艾思軻同學(xué)結(jié)論不存在的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

已知拋物線的頂點在第一象限,其橫坐標(biāo)是縱坐標(biāo)的2倍,對稱軸與x軸的交點在一次函數(shù)的圖象上,求b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 九年級數(shù)學(xué)下 題型:044

已知拋物線y=x2+bx+c的頂點在第四象限,頂點的縱坐標(biāo)是橫坐標(biāo)的2倍,對稱軸與x軸的交點在一次函數(shù)y=x-c上,求b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,拋物線過原點O,且與x軸交于另一點A(A在O右側(cè)),頂點為B.艾思軻同學(xué)用一把寬3cm的矩形直尺對拋物線進行如下測量:(1)量得OA=3cm,(2)當(dāng)把直尺的左邊與拋物線的對稱抽重合,使得直尺左下端點與拋物線的頂點重合時(如圖1),測得拋物線與直尺右邊的交點C的刻度讀數(shù)為4.5cm.
艾思軻同學(xué)將A的坐標(biāo)記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對稱軸上是否存在使△ACD周長最小的點D;
(4)然后又將圖中的直尺(足夠長)沿水平方向向右平移到點A的右邊(如圖2),直尺的兩邊交x軸于點H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長度是否存在函數(shù)關(guān)系.
同學(xué):如上述(3)(4)結(jié)論存在,請你幫艾思軻同學(xué)一起完成,如上述(3)(4)結(jié)論不存在,請你告訴艾思軻同學(xué)結(jié)論不存在的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年上海市寶山區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,拋物線過原點O,且與x軸交于另一點A(A在O右側(cè)),頂點為B.艾思軻同學(xué)用一把寬3cm的矩形直尺對拋物線進行如下測量:(1)量得OA=3cm,(2)當(dāng)把直尺的左邊與拋物線的對稱抽重合,使得直尺左下端點與拋物線的頂點重合時(如圖1),測得拋物線與直尺右邊的交點C的刻度讀數(shù)為4.5cm.
艾思軻同學(xué)將A的坐標(biāo)記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對稱軸上是否存在使△ACD周長最小的點D;
(4)然后又將圖中的直尺(足夠長)沿水平方向向右平移到點A的右邊(如圖2),直尺的兩邊交x軸于點H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長度是否存在函數(shù)關(guān)系.
同學(xué):如上述(3)(4)結(jié)論存在,請你幫艾思軻同學(xué)一起完成,如上述(3)(4)結(jié)論不存在,請你告訴艾思軻同學(xué)結(jié)論不存在的理由.

查看答案和解析>>

同步練習(xí)冊答案