乘法公式的探究及應用:
(1)如圖1所示,可以求出陰影部分的面積是
 
(寫成兩數(shù)平方差的形式).
(2)若將圖1中的陰影部分裁剪下來,重新拼成一個如圖2的矩形,此矩形的面積是
 
(寫成多項式乘法的形式).
精英家教網(wǎng)
(3)比較兩圖的陰影部分面積,可以得到乘法公式
 

(4)應用所得的公式計算:
(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
992
)(1-
1
1002
)
分析:(1)利用面積公式:大正方形的面積-小正方形的面積=陰影面積;
(2)利用矩形公式即可求解;
(3)利用面積相等列出等式即可;
(4)利用平方差公式簡便計算.
解答:解:(1)a2-b2;
(2)(a+b)(a-b);

(3)a2-b2=(a+b)(a-b);

(4)原式=(1-
1
2
)(1+
1
2
)(1-
1
3
)(1+
1
3
)…(1-
1
99
)(1+
1
99
)(1-
1
100
)(1+
1
100
)

=
1
2
×
3
2
×
2
3
×
4
3
×…×
98
99
×
100
99
×
99
100
×
101
100
,
=
101
200
點評:本題綜合考查了證明平方差公式和使用平方差公式的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、乘法公式的探究及應用.
(1)如左圖,可以求出陰影部分的面積是
a2-b2
(寫成兩數(shù)平方差的形式);   
(2)如右圖,若將陰影部分裁剪下來,重新拼成一個長方形,它的寬是
a-b
,長是
a+b
,面積是
(a+b)(a-b)
.(寫成多項式乘法的形式)
(3)比較左、右兩圖的陰影部分面積,可以得到乘法公式
(a+b)(a-b)=a2-b2
.(用式子表達)
(4)運用你所得到的公式,計算下列各題:
①10.3×9.7
②(2m+n-p)(2m-n+p)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

29、乘法公式的探究及應用
(1)如圖1,可以求出陰影部分的面積是
a2-b2
(寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是
a-b
,長是
a+b
,面積是
(a+b)(a-b)
(寫成多項式乘法的形式);

(3)比較圖1、圖2陰影部分的面積,可以得到公式
(a+b)(a-b)=a2-b2

(4)運用你所得到的公式,計算下列各題:
①10.2×9.8,②(2m+n-p)(2m-n+p).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

乘法公式的探究及應用.
(1)如圖1,可以求出陰影部分的面積是
a2-b2
a2-b2
(寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是
a-b
a-b
,長是
a+b
a+b
,面積是
(a+b)(a-b)
(a+b)(a-b)
(寫成多項式乘法的形式)
(3)比較左、右兩圖的陰影部分面積,可以得到乘法公式
(a+b)(a-b)=a2-b2
(a+b)(a-b)=a2-b2
(用式子表達)
(4)運用你所得到的公式,計算:10.3×9.7(x+2y-3)(x-2y+3).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

乘法公式的探究及應用:
探究問題:
如圖1是一張長方形紙條,將其剪成長短兩條后剛好能拼成圖2,如圖所示.
(1)則圖1長方形紙條的面積可表示為
(a+b)(a-b)
(a+b)(a-b)
(寫成多項式乘法的形式).

(2)拼成的圖2中陰影部分面積可表示為
a2-b2
a2-b2
(寫成兩數(shù)平方差的形式).

(3)比較兩圖的陰影部分面積,可以得到乘法公式
(a+b)(a-b)=a2-b2
(a+b)(a-b)=a2-b2

結論運用:
(4)應用所得的公式計算:(2x+y)(2x-y)=
4x2-y2
4x2-y2
(
2
3
m-
1
2
)(-
2
3
m-
1
2
)
=
1
4
-
4
9
m2
1
4
-
4
9
m2

拓展運用:
(5)計算:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
20122
)(1-
1
20132
)

查看答案和解析>>

同步練習冊答案