【題目】ABC在下列條件下,不是直角三角形的是(

A. B.

C. D.

【答案】B

【解析】

利用勾股定理的逆定理判斷AD選項,用直角三角形各角之間的關(guān)系判斷BC選項.

解:A、∵b2=a2-c2,∴b2+c2=a2,故本選項正確;

B、∵∠A:∠B:∠C=345,∴設(shè)∠A=3x,則∠B=4x,∠C=5x,

∵∠A+B+C=180°,即3x+4x+5x=180°,解得,x=15°,

5x=5×15°=75°90°,故本選項錯誤.

C、∵∠A=B-C,∴∠B=A+C

∵∠A+B+C=180°,∴2(∠A+C=180°,即∠A+C=90°,故本選項正確;

D、∵a2b2c2=132,∴令a2=x,則b2=2x,c2=3x

x+2x=3x,∴a2+c2=b2,故本選項正確;

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,1=2,DB=DC.

(1)求證:ABD≌△EDC;

(2)若∠A=135°,BDC=30°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DE⊥DF,交AB于點E,連結(jié)EG、EF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在RtABC中,∠C=90°,AB=10,BC=6P從點A出發(fā),沿折現(xiàn)AB—BC向終點C運動,在AB上以每秒5個單位長度的速度運動,在BC上以每秒3個單位長度的速度運動Q從點C出發(fā),沿CA方向以每秒個單位長度的速度運動PQ兩點同時出發(fā),當點P停止時,點Q也隨之停止設(shè)點P運動的時間為t

1)求線段AQ的長(用含t的代數(shù)式表示)

2)當PQABC的一邊平行時,求t的值

3)如圖②,過點PPEAC于點E,以PE、QE為鄰邊作矩形PEQF,點DAC的中點,連結(jié)DF直接寫出DF將矩形PEQF分成兩部分的面積比為1:2t的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:

∵∠1+2=180°,∠2+4=180°(已知)

∴∠1=4( )

ca( )

又∵∠2+3=180°(已知 )

3=6( )

∴∠2+6=180°( )

ab( )

cb( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB=30°M、N分別在OAOB上,且OM=2ON=4,點P、Q分別在OB、OA上,則MP+PQ+QN的最小值是 _______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, B、∠D的兩邊分別平行。

(1)在圖1中,∠B與∠D的數(shù)量關(guān)系是 ;在圖2中,∠B與∠FDC的數(shù)量關(guān)系是 ;

(2)用一句話歸納的結(jié)論為: ;

(3)已知∠α的兩邊與∠β的兩邊分別平行,并且∠α比∠β3倍少,求∠α、∠β的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF

1)四邊形ABEF_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)

2AEBF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為________∠ABC=________°.(直接填寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

成績x/

頻數(shù)

頻率

50x60

10

0.05

 60x70

30

0.15

 70x80

40

n

 80x90

m

0.35

 90x100

50

0.25

請根據(jù)所給信息,解答下列問題:

(1)m   ,n   

(2)請補全頻數(shù)分布直方圖;

(3)若成績在90分以上(包括90)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?

查看答案和解析>>

同步練習冊答案