精英家教網 > 初中數學 > 題目詳情
已知:AB為⊙O的直徑,∠A=∠B=90°,DE與⊙O相切于E,⊙O的半徑為
5
,AD=2.
①求BC的長;
②延長AE交BC的延長線于G點,求EG的長.
①過點D作DF⊥BC于點F,
∵AB為⊙O的直徑,∠A=∠B=90°,
∴四邊形ABFD是矩形,AD與BC是⊙O的切線,
∴DF=AB=2
5
,BF=AD=2,
∵DE與⊙O相切,
∴DE=AD=2,CE=BC,
設BC=x,
則CF=BC-BF=x-2,DC=DE+CE=2+x,
在Rt△DCF中,DC2=CF2+DF2,
即(2+x)2=(x-2)2+(2
5
2,
解得:x=
5
2
,
即BC=
5
2


②∵AB為⊙O的直徑,∠A=∠B=90°,
∴ADBC,
∴△ADE△GCE,
∴AD:CG=DE:CE,AE:EG=AD:CG,
∵AD=DE=2,
∴CG=CE=BC=
5
2
,
∴BG=BC+CG=5,
∴AE:EG=4:5,
在Rt△ABG中,AG=
AB2+BG2
=3
5
,
∴EG=
5
9
AG=
5
3
5
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

在一個工件上有一梯形塊ABCD,其中ADBC,∠BCD=90°,面積為21cm2,周長為20cm,若工人師傅要在其上加工一個以CD為直徑的半圓槽,且圓槽剛好和AB邊相切(如圖所示),求此圓的半徑長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,D是AB邊上的一點,以BD為直徑的⊙0與邊AC相切于點E,連接DE并延長,與BC的延長線交于點F.
(1)求證:BD=BF;
(2)若BC=12,AD=8,求BF的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,A是以BC為直徑的⊙O上一點,于點D,AD⊥BC過點B作⊙O的切線,與CA的延長線相交于點E,G是AD的中點,連接CG并延長與BE相交于點F,延長AF與CB的延長線相交于點P.
(1)求證:BF=EF;
(2)求證:PA是⊙O的切線;
(3)若FG=BF,且⊙O的半徑長為3
2
,求BD和FG的長度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線.
(2)若AD=2
6
,AE=6
2
,求EC的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C
(1)如圖①,若AB=1,∠P=30°,求AP的長(結果保留根號);
(2)如圖②,若D為AP的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在矩形ABCD中,點O在對角線BD上,以OD為半徑的⊙O與AD、BD分別交于點E、F,且∠ABE=∠DBC.
(1)求證:BE與⊙O相切;
(2)若sin∠ABE=
1
3
,CD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,⊙O′經過⊙O的圓心,E、F是兩圓的交點,直線OO′交⊙O′于點P,交EF于點C,交⊙O于點Q,且EF=2
15
,sin∠P=
1
4

(1)求證:PE是⊙O的切線;
(2)求⊙O和⊙O′的半徑的長;
(3)若點A在劣弧
QF
上運動(與點Q、F不重合),連接PA交劣弧
DF
于點B,連接BC并延長交⊙O于點G,設CG=x,PA=y,求y關于x的函數關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知O為原點,點A的坐標為(4,3),⊙A的半徑為2,過A作直線L平行于x軸,點P在直線L上運動.
(1)當點P在⊙A上時,請直接寫出它的坐標;
(2)設點P的橫坐標為6
2
,試判斷直線OP與⊙A的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案