【題目】如圖,在中,點是線段上的動點,將線段繞點逆時針旋轉(zhuǎn)得到線段,連接.若已知,設(shè)兩點間的距離為兩點間的距離為兩點間的距離為.(若同學(xué)們打印的BC的長度如不是,請同學(xué)們重新畫圖、測量)

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對自變量x的變化而變化的規(guī)律進行了探究,下面是小明的探究過程,請補充完整:

1)按照下表中自變量的值進行取點、畫圖、測量,分別得到了的幾組對應(yīng)值,如下表:

0

1

2

3

4

5

6

7

8

7.03

6.20

5.44

4.76

4.21

3.85

3.73

3.87

4.26

5.66

4.32

1.97

1.59

2.27

3.43

4.73

寫出的值.(保留1位小數(shù)

2)在同一平面直角坐標(biāo)系中,描出補全后的表中各組數(shù)值所對應(yīng)的點,并畫出函數(shù)的圖象;

3)結(jié)合函數(shù)圖像,解決問題:

①當(dāng)在線段上時,的長度約為________

②當(dāng)為等腰三角形時,的長度約為_______

【答案】1;(2)見詳解;(3)①6;②3

【解析】

1)當(dāng)時,,即可求解

2)描點作出圖像即可.

3)①當(dāng)在線段上時,即:;②分三種情況分別求解.

1)當(dāng)時,點B與點D重合,cm

當(dāng),測量出cm

2)描繪后表格如下圖:

3)①當(dāng)在線段上時,即:

從圖像可以看出,當(dāng)時,cm

故答案為:6.

②當(dāng)時,即:,此時0,當(dāng)得不到三角形,故

當(dāng)時,即:,在圖上畫出直線,此時

當(dāng)時,即:,從上圖可以看出cm

故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與雙曲線交于A、B兩點,點B坐標(biāo)為(-4,-2),C為雙曲線上一點,且在第一象限內(nèi),若AOC面積為6,則點C坐標(biāo)為(

A. 4,2 B. 2,3 C. 3,4 D. 2,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出ABC向下平移4個單位長度得到的A1B1C1,點C1的坐標(biāo)是   ;

(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為2:1;

(3)四邊形AA2C2C的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某植物園有一塊足夠大的空地,其中有一堵長為a米的墻,現(xiàn)準(zhǔn)備用20米的籬笆圍兩間矩形花圃,中間用籬笆隔開.小俊設(shè)計了如圖甲和乙的兩種方案:

方案甲中AD的長不超過墻長;方案乙中AD的長大于墻長.

1)若a=6

①按圖甲的方案,要圍成面積為25平方米的花圃,則AD的長是多少米?

②按圖乙的方案,能圍成的矩形花圃的最大面積是多少?

2)若0a6.5,哪種方案能圍成面積最大的矩形花圃?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,為射線上一定點,點關(guān)于射線的對稱點為點為射線上一動點,連接,滿足為鈍角,以點為中心,將線段逆時針旋轉(zhuǎn)至線段,滿足點在射線的反向延長線上.

(1)依題意補全圖形;

(2)當(dāng)點在運動過程中,旋轉(zhuǎn)角是否發(fā)生變化?若不變化,請求出的值,若變化,請說明理由;

(3)從點向射線作垂線,與射線的反向延長線交于點,探究線段的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB的平分線ON上依次取點C,F(xiàn),M,過點CDEOC,分別交OA,OB于點D,E,以FM為對角線作菱形FGMH.已知∠DFE=GFH=120°,F(xiàn)G=FE,設(shè)OC=x,圖中陰影部分面積為y,則yx之間的函數(shù)關(guān)系式是( )

A. y= B. y= C. y=2 D. y=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰BCD中,∠DCB120°,點E滿足∠DEC60°

1)如圖1,點E在邊BD上時,求證:ED2BE;

2)如圖2,過點BDE的垂線交DE的延長線于點F,試探究DEEF的數(shù)量關(guān)系,并證明;

3)若∠DEB150°,直接寫出BE,DEEC的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了堅持以人民為中心的發(fā)展思想,以不斷改善民生為發(fā)展的根本目的,某機構(gòu)隨機對某小區(qū)部分居民進行了關(guān)于社區(qū)服務(wù)工作滿意度的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表,根據(jù)圖標(biāo)信息,解答下列問題:

滿意度

人數(shù)

所占百分比

非常滿意

12

滿意

54

比較滿意

不滿意

6

1)本次調(diào)查的總?cè)藬?shù)為_______

2)請補全條形統(tǒng)計圖;

3)據(jù)統(tǒng)計,該社區(qū)服務(wù)站平均每天接待居民約1000名,若將“非常滿意”和“消意”作為居民對社區(qū)服務(wù)站服務(wù)工作的肯定,請你估計該社區(qū)服務(wù)站服務(wù)工作平均每天得到多少名居民的肯定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax)(x+3)交x軸于點A、B,交y軸于點C,tanCAO

1)求a值;

2)點P為第一象限內(nèi)拋物線上一點,點P的橫坐標(biāo)為t,連接PA,PC,設(shè)△PAC的面積為S,求St之間的關(guān)系式;

3)在(2)的條件下,點Q在第一象限內(nèi)的拋物線上(點Q在點P的上方),過點PPEAB,垂足為E,點D在線段AQ上,點F在線段AO上連接EDDF,DEAP于點G,若∠QDF+QDE180°,∠DFA+AED90°,PGPE,PGEF32,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案