(2012•貴陽)如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交于BC的延長線于F,若∠F=30°,DE=1,則EF的長是( 。
分析:連接AF,求出AF=BF,求出∠AFD、∠B,得出∠BAC=30°,求出AE,求出∠FAC=∠AFE=30°,推出AE=EF,代入求出即可.
解答:解:連接AF,
∵DF是AB的垂直平分線,
∴AF=BF,
∵FD⊥AB,
∴∠AFD=∠BFD=30°,∠B=∠FAB=90°-30°=60°,
∵∠ACB=90°,
∴∠BAC=30°,∠FAC=60°-30°=30°,
∵DE=1,
∴AE=2DE=2,
∵∠FAE=∠AFD=30°,
∴EF=AE=2,
故選B.
點(diǎn)評:本題考查了含30度角的直角三角形,線段垂直平分線,角平分線的性質(zhì)等知識點(diǎn)的應(yīng)用,主要考查學(xué)生運(yùn)用性質(zhì)進(jìn)行推理和計(jì)算的能力,題目綜合性比較強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴陽)如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴陽)如圖,在⊙O中,直徑AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,則
(1)BD的長是
2
2
;
(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴陽)如圖,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一點(diǎn)C,延長AA1到A2,使得A1A2=A1C;在A2C上取一點(diǎn)D,延長A1A2到A3,使得A2A3=A2D;…,按此做法進(jìn)行下去,∠An的度數(shù)為
80°
2n-1
80°
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴陽)如圖,一次函數(shù)y=k1x+b1的圖象l1與y=k2x+b2的圖象l2相交于點(diǎn)P,則方程組
y=k1x+b1
y=k2x+b2
的解是( 。

查看答案和解析>>

同步練習(xí)冊答案