【題目】如圖,在□ABCD中,EF分別為邊AB、CD的中點,BD是對角線,過A點作AGBDCB的延長線于點G

1)求證:DEBF;

2)當(dāng)G為何值時?四邊形DEBF是菱形,請說明理由.

【答案】1)詳見解析;(2)當(dāng)G=90°時,四邊形DEBF是菱形,理由詳見解析

【解析】

1)根據(jù)已知條件證明DFBE,DF=BE,從而得出四邊形DEBF為平行四邊形,即可證明DEBF;

2)當(dāng)G=90°時,四邊形DEBF是菱形.先證明BF=DCDF,再根據(jù)鄰邊相等的平行四邊形是菱形,從而得出結(jié)論.

證明:(1)□ABCD中,ABCDAB=CD ,        

EF分別為邊AB、CD的中點,

DF=DC,BE=AB,

DFBE,DF=BE,

四邊形DEBF為平行四邊形,

DEBF

2)當(dāng)G=90°時,四邊形DEBF是菱形.

理由: AGBD ,

∴ ∠DBC=∠G=90°

為直角三角形,

F為邊CD的中點,

∴BF=DCDF

四邊形DEBF為平行四邊形,

四邊形DEBF為菱形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸交于點,與y軸交于點B,拋物線經(jīng)過點

k的值和拋物線的解析式;

x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點

若以O,B,N,P為頂點的四邊形OBNP是平行四邊形時,m的值.

當(dāng) ,m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△PAB內(nèi)接于O,ABCD的邊ADO的直徑,且∠C=∠APB,連接BD

(1)求證:BCO的切線.

(2)若BC=2,∠PBD=60°,求與弦AP圍成的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,AC是弦,∠BAC的平分線交O于點D,過點DDEACAC的延長線于點E

(1)求證:DEO的切線;

(2)若AB=10,AC=6,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線l1y=﹣2x+5y軸交于點B,直線l2ykx+bx軸交于點D1,0),與y軸交于點C,兩直線交于點A21).

1)求直線l2的函數(shù)解析式.

2)求兩直線與y軸圍成的三角形的面積.

3)點Pl1上一動點,點Ql2上一動點,點E0,2),若以BE為一邊,且以點B,E,P,Q為頂點的四邊形為平行四邊形,直接寫出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx4x軸交于點A,以OA為斜邊在x軸上方作等腰RtOAB,并將RtAOB沿x軸向右平移,當(dāng)點B落在直線yx4上時,RtOAB掃過的面積是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AOB中,∠AOB=90°,點A的坐標(biāo)為(4,2),BO=4,反比例函數(shù)y=的圖象經(jīng)過點B,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,直線BMAB于點B,點CO上,分別連接BCAC,且AC的延長線交BM于點D,CFO的切線交BM于點F

(1)求證:CFDF

(2)連接OF,若AB=10,BC=6,求線段OF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%

1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.

2)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價×銷售量)

查看答案和解析>>

同步練習(xí)冊答案