【題目】如圖,三張“黑桃”撲克牌,背面完全相同將三張撲克牌背面朝上,洗勻后放在桌面上甲,乙兩人進(jìn)行摸牌游戲,甲先從中隨機(jī)抽取一張,記下數(shù)字再放回洗勻,乙再從中隨機(jī)抽取一張.
(1)甲抽到“黑桃”,這一事件是 事件(填“不可能“,“隨機(jī)“,“必然”);
(2)利用樹狀圖或列表的方法,求甲乙兩人抽到同一張撲克牌的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)、,與軸交于點(diǎn),,、兩點(diǎn)間的距離為,拋物線的對稱軸為.
(1)求拋物線的解析式;
(2)如圖1,對稱軸上是否存在點(diǎn),使,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(3)如圖2,拋物線的頂點(diǎn)為,對稱軸交軸于點(diǎn),點(diǎn)為拋物線上一點(diǎn),點(diǎn)不與點(diǎn)重合. 當(dāng)時,過點(diǎn)分別作軸的垂線和平行線,與軸交于點(diǎn)、與對稱軸交于點(diǎn),得到矩形,求矩形周長的最大值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2019秋潮陽區(qū)校級月考)已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點(diǎn)P,求△PAD周長的最小值;
(3)拋物線的對稱軸上有一動點(diǎn)M,當(dāng)△MAD是等腰三角形時,直接寫出M點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,以為圓心,在第一象限內(nèi)畫圓弧,與雙曲線交于兩點(diǎn),點(diǎn)是圓弧上一個動點(diǎn),連結(jié)并延長交第三象限的雙曲線于點(diǎn),作軸,軸,只有當(dāng)時,,則的半徑為_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)將此函數(shù)的圖象記為.
(1)當(dāng)時,
直接寫出此函數(shù)的函數(shù)表達(dá)式.
點(diǎn)在圖象上,求點(diǎn)的坐標(biāo).
點(diǎn)在圖象上,求的值.
(2)設(shè)圖象最低點(diǎn)的縱坐標(biāo)為.當(dāng)時,直接寫出的值.
(3)矩形的頂點(diǎn)坐標(biāo)分別為若函數(shù)在范圍內(nèi)的圖象與矩形的邊有且只有一個公共點(diǎn),直接寫出此時的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn),且此拋物線的頂點(diǎn)坐標(biāo)為.
求此拋物線的解析式;
設(shè)點(diǎn)D為已知拋物線對稱軸上的任意一點(diǎn),當(dāng)與面積相等時,求點(diǎn)D的坐標(biāo);
點(diǎn)P在線段AM上,當(dāng)PC與y軸垂直時,過點(diǎn)P作x軸的垂線,垂足為E,將沿直線CE翻折,使點(diǎn)P的對應(yīng)點(diǎn)與P、E、C處在同一平面內(nèi),請求出點(diǎn)坐標(biāo),并判斷點(diǎn)是否在該拋物線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD為BC邊上的高,E、F分別為AB、AC邊上的點(diǎn),將△ABC分別沿DE、DF折疊,使點(diǎn)B落在DA的延長線上點(diǎn)M處,點(diǎn)C落在點(diǎn)N處,連接MN,若MN∥AC,則AF的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線交軸于點(diǎn),,交軸于點(diǎn),且拋物線的對稱軸經(jīng)過點(diǎn),過點(diǎn)的直線交拋物線于另一點(diǎn),點(diǎn)是該拋物線上一點(diǎn),連接,,,.
(1)求直線及拋物線的函數(shù)表達(dá)式;
(2)試問:軸上是否存在某一點(diǎn),使得以點(diǎn),,為頂點(diǎn)的與相似?若相似,請求出此時點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)是直線上方的拋物線上一動點(diǎn)(不與點(diǎn),重合),過作交直線于點(diǎn),以為直徑作,則在直線上所截得的線段長度的最大值等于_______.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“防疫有我,愛衛(wèi)同行”,為切實(shí)開展愛國衛(wèi)生運(yùn)動,某校決定在校園組織系列衛(wèi)生清掃活動,參加人員從全校各部門自愿報名的教師中隨機(jī)抽。?dāng)?shù)學(xué)組有位教師報名參加第一次清掃活動,位教師分別記為甲、乙、丙、。
(1)如果需從這位教師中隨機(jī)抽取名教師,求抽到教師甲的概率;
(2)如果需從這位教師中隨機(jī)抽取名教師,請用列表或畫樹狀圖的方法,求出抽到教師乙和丁的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com