作業(yè)寶將兩個三角板按如圖所示的位置擺放,已知∠α=32°,則∠β=


  1. A.
    69°
  2. B.
    32°
  3. C.
    58°
  4. D.
    148°
B
分析:根據(jù)余角的性質:等角的余角相等即可求解.
解答:解:∵∠1+∠α=∠2+∠β=90°,
∴∠α=∠β=32°.
故選:B.
點評:考查了余角:如果兩個角的和等于90°(直角),就說這兩個角互為余角.即其中一個角是另一個角的余角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

將一副三角板按如圖①所示的位置擺放,使后兩塊三角板的直角邊AC和MD重合,已知AB=AC=16cm,將△MED繞點A(m)逆時針旋轉60°后得到圖②,兩個三角形重疊(陰影)部分的面積大約是多少?(結果精確到0.1cm,
3
≈1.73)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•臨汾二模)操作與證明
把兩個全等的含45°角的三角板按如圖所示的位置放置,使B、A、D在一條直線上,C、A、E在一條直線上,過點C作CM⊥BD于M,過點E作EF∥BD;直線CM與EF相交于點F.
(1)求證:△CEF是等腰直角三角形.
猜想與發(fā)現(xiàn)
(2)在圖1的條件下,CF與BD的數(shù)量關系為
CF=
1
2
BD
CF=
1
2
BD

(3)如圖2若把圖1中Rt△ADE換為Rt△ABC不全等但相似的三角板時,其他條件不變,此時CF與BD的數(shù)量關系為
CF=
1
2
BD
CF=
1
2
BD

拓展與探究
(4)如圖3若將圖1中的兩塊三角板換成任意兩個全等的直角三角形(Rt△ABC≌Rt△DAE),使銳角頂點A重合,點C、A、E在一條直線上,連接BD交AC于G,過點C作CM⊥BD于M,過點E作EF∥BD,直線CM與EF于點F,圖1中CF與BD的數(shù)量關系還成立嗎?若成立,請加以證明;若不成立,請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

將一副三角板按如圖①所示的位置擺放,使后兩塊三角板的直角邊AC和MD重合,已知AB=AC=16cm,將△MED繞點A(m)逆時針旋轉60°后得到圖②,兩個三角形重疊(陰影)部分的面積大約是多少?(結果精確到0.1cm,數(shù)學公式≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省巢湖市初中畢業(yè)班第二次聯(lián)考數(shù)學試卷(解析版) 題型:解答題

(2010•巢湖模擬)將一副三角板按如圖①所示的位置擺放,使后兩塊三角板的直角邊AC和MD重合,已知AB=AC=16cm,將△MED繞點A(m)逆時針旋轉60°后得到圖②,兩個三角形重疊(陰影)部分的面積大約是多少?(結果精確到0.1cm,≈1.73)

查看答案和解析>>

同步練習冊答案