【題目】如圖,在邊長為6的等邊△ABC中,AD是BC邊上的中線,點E是△ABC內(nèi)一個動點,且DE=2,將線段AE繞點A逆時針旋轉(zhuǎn)60°得到AF,則DF的最小值是______.
【答案】
【解析】
以ED為邊作等邊△DEG,連接AD,EF,AG,由等邊三角形的性質(zhì)和勾股定理可求AD=3,由等邊三角形的性質(zhì)可證△AEG≌△FED,可得DF=AG,根據(jù)三角形的三邊關系,可得當點A,點G,點D三點共線時,AG值最小,即DF值最小,則可求線段DF的最小值.
如圖,以ED為邊作等邊△DEG,連接AD,EF,AG,
∵△ABC是等邊三角形,點D是BC中點,
∴BD=CD=3,AD⊥BC,
∴AD= =3,
∵將線段AE繞點A逆時針旋轉(zhuǎn)60°得AF,
∴AE=AF,∠EAF=60°,
∴△AEF是等邊三角形,
∴AE=EF,∠AEF=60°,
∵△DEG是等邊三角形,
∴DE=EG=2,∠GED=60°=∠AEF,
∴∠AEG=∠FED,且AE=EF,EG=DE,
∴△AEG≌△FED(SAS),
∴DF=AG,
∵在△ADG中,AG≥AD-DG,
∴當點A,點G,點D三點共線時,AG值最小,即DF值最小,
∴DF最小值=AD-DG=3-2.
故答案為:3-2.
科目:初中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計)這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎價和浮動價兩部分組成,(即出廠價=基礎價+浮動價)其中基礎價與薄板的大小無關,是固定不變的,浮動價與薄板的邊長x成正比例,在營銷過程中得到了表格中的數(shù)據(jù),已知出廠一張邊長為40cm的薄板,獲得利潤是26元.(利潤=出廠價-成本價)
薄板的邊長(cm) | 20 | 30 |
出廠價(元/張) | 50 | 70 |
(1)求一張薄板的出廠價y與邊長x之間滿足的函數(shù)關系式;
(2)求一張薄板的利潤p與邊長x之間的函數(shù)關系式;
(3)若一張薄板的利潤是34元,且成本最低,此時薄板的邊長為多少?當薄板的邊長為多少時,所獲利潤最大,求出這個最大值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則( )
A. DE=EB B. DE=EB C. DE=DO D. DE=OB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在解不等式|x+1|>2時,我們可以采用下面的解答方法:
①當x+1≥0時,|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式組
∴解得不等式組的解集為x>1.
②當x+1<0時,|x+1|=﹣(x+1).
∴由原不等式得﹣(x+1)>2.∴可得不等式組
∴解得不等式組的解集為x<﹣3.
綜上所述,原不等式的解集為x>1或x<﹣3.
請你仿照上述方法,嘗試解不等式|x﹣2|≤1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。
(1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩隊進行乒乓球團體賽,比賽規(guī)則規(guī)定:兩隊之間進行3局比賽,3局比賽必須全部打完,只要贏滿2局的隊為獲勝隊,假設甲、乙兩隊之間每局比賽輸贏的機會相同.
()甲3局全勝的概率是__________;
()如果甲隊已經(jīng)贏得了第1局比賽,那么甲隊最終獲勝的概率是多少?(用“樹狀圖”或“列表”法寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形是一張放在平面直角坐標系中的矩形紙片,點在軸上,點在軸上,將邊沿直線折疊,使點落在邊上的點處.
的大小 (度);
若,用含的代數(shù)式表示.則
在的條件下,已知折痕的長為,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是我市某一天內(nèi)的氣溫變化圖,根據(jù)圖象,下列說法中錯誤的是( )
A.這一天中最高氣溫是26℃
B.這一天中最高氣溫與最低氣溫的差為16℃
C.這一天中2時至14時之間的氣溫在逐漸升高
D.這一天中14時至24時之間的氣溫在逐漸降低
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課上教師呈現(xiàn)一個問題
甲、乙、丙三位同學用不同的方法添加輔助線解決問題,如下圖:
甲同學輔助線的做法和分析思路如下:
(1)請你根據(jù)乙同學所畫的圖形,描述輔助線的做法,并寫出相應的分析思路.
輔助線:___________________;
分析思路:
(2)請你根據(jù)丙同學所畫的圖形,求∠EFG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com