【題目】已知兩個(gè)共一個(gè)頂點(diǎn)的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點(diǎn),連接MB、ME.
(1)如圖1,當(dāng)CB與CE在同一直線上時(shí),求證:MB∥CF;
(2)如圖1,若CB=a,CE=2a,求BM,ME的長(zhǎng);
(3)如圖2,當(dāng)∠BCE=45°時(shí),求證:BM=ME.
【答案】(1)證明見(jiàn)解析;(2)BM=ME=;(3)證明見(jiàn)解析.
【解析】
(1)如圖1,延長(zhǎng)AB交CF于點(diǎn)D,證明BM為△ADF的中位線即可.
(2)如圖2,作輔助線,推出BM、ME是兩條中位線.
(3)如圖3,作輔助線,推出BM、ME是兩條中位線:BM=DF,ME=AG;然后證明△ACG≌△DCF,得到DF=AG,從而證明BM=ME.
(1)如圖1,延長(zhǎng)AB交CF于點(diǎn)D,則易知△ABC與△BCD均為等腰直角三角形,
∴AB=BC=BD.
∴點(diǎn)B為線段AD的中點(diǎn).
又∵點(diǎn)M為線段AF的中點(diǎn),
∴BM為△ADF的中位線.
∴BM∥CF.
(2)如圖2,延長(zhǎng)AB交CF于點(diǎn)D,則易知△BCD與△ABC為等腰直角三角形,
∴AB=BC=BD=a,AC=AD=a,
∴點(diǎn)B為AD中點(diǎn),又點(diǎn)M為AF中點(diǎn).
∴BM=DF.
分別延長(zhǎng)FE與CA交于點(diǎn)G,則易知△CEF與△CEG均為等腰直角三角形,
∴CE=EF=GE=2a,CG=CF=a.
∴點(diǎn)E為FG中點(diǎn),又點(diǎn)M為AF中點(diǎn).
∴ME=AG.
∵CG=CF=a,CA=CD=a,∴AG=DF=a.
∴BM=ME=.
(3)如圖3,延長(zhǎng)AB交CE于點(diǎn)D,連接DF,則易知△ABC與△BCD均為等腰直角三角形,
∴AB=BC=BD,AC=CD.
∴點(diǎn)B為AD中點(diǎn).
又點(diǎn)M為AF中點(diǎn),∴BM=DF.
延長(zhǎng)FE與CB交于點(diǎn)G,連接AG,則易知△CEF與△CEG均為等腰直角三角形,
∴CE=EF=EG,CF=CG.
∴點(diǎn)E為FG中點(diǎn).
又點(diǎn)M為AF中點(diǎn),∴ME=AG.
在△ACG與△DCF中,∵,
∴△ACG≌△DCF(SAS).
∴DF=AG,∴BM=ME.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,化簡(jiǎn)的結(jié)果為: ①c;②;③b﹣a;④a﹣b+2c.其中正確的有( )
A. 一個(gè) B. 兩個(gè) C. 三個(gè) D. 四個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,BE⊥AD,BE交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F在AB上,且EF∥AC.求證:點(diǎn)F是AB的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱(chēng)為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱(chēng)為“正方形數(shù)”.觀察下面的點(diǎn)陣圖和相應(yīng)的等式,探究其中的規(guī)律:
(1)下圖反映了任何一個(gè)三角形數(shù)是如何得到的,認(rèn)真觀察,并在④后面的橫線上寫(xiě)出相應(yīng)的等式;
(2)通過(guò)猜想,寫(xiě)出(1)中與第八個(gè)點(diǎn)陣相對(duì)應(yīng)的等式 ;
(3)從下圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.結(jié)合(1)觀察下列點(diǎn)陣圖,并在⑤看面的橫線上寫(xiě)出相應(yīng)的等式.
(4)通過(guò)猜想,寫(xiě)出(3)中與第n個(gè)點(diǎn)陣相對(duì)應(yīng)的等式 ;
(5)判斷256是不是正方形數(shù),如果不是,說(shuō)明理由;如果是,256可以看作哪兩個(gè)相鄰的“三角形數(shù)”之和?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與⊙O,AB是⊙O的直徑,AD⊥于點(diǎn)D.
(1)如圖①,當(dāng)直線與⊙O相切于點(diǎn)C時(shí),若∠DAC=30°,求∠BAC的大小;
(2)如圖②,當(dāng)直線與⊙O相交于點(diǎn)E、F時(shí),若∠DAE=18°,求∠BAF的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),OM是∠AOC的角平分線,ON是∠COB的平分線
(1)指出圖中所有互為補(bǔ)角的角,
(2)求∠MON的度數(shù),
(3)指出圖中所有互為余角的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)八年級(jí)組織了一次“漢字聽(tīng)寫(xiě)比賽”,每班選25名同學(xué)參加比賽,成績(jī)分為A,B,C,D四個(gè)等級(jí),其中A等級(jí)得分為100分,B等級(jí)得分為85分,C等級(jí)得分為75分,D等級(jí)得分為60分,語(yǔ)文教研組將八年級(jí)一班和二班的成績(jī)整理并繪制成如下的統(tǒng)計(jì)圖,請(qǐng)根損換供的信息解答下列問(wèn)題.
(1)把一班比賽成統(tǒng)計(jì)圖補(bǔ)充完整;
(2)填表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
一班 | a | b | 85 |
二班 | 84 | 75 | c |
表格中:a=______,b=______,c=_______.
(3)請(qǐng)從以下給出的兩個(gè)方面對(duì)這次比賽成績(jī)的結(jié)果進(jìn)行分析:
①?gòu)钠骄鶖?shù)、眾數(shù)方面來(lái)比較一班和二班的成績(jī);
②從B級(jí)以上(包括B級(jí))的人數(shù)方面來(lái)比較-班和二班的成績(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出如下定義:如果兩個(gè)不相等的有理數(shù)a,b滿(mǎn)足等式a-b=ab.那么稱(chēng)a,b是“關(guān)聯(lián)有理數(shù)對(duì)”,記作(a,b).如:因?yàn)?/span>,.所以數(shù)對(duì)(3,)是“關(guān)聯(lián)有理數(shù)對(duì)”.
(1)在數(shù)對(duì)①(1,)、②(-1,0)、③(,)中,是“關(guān)聯(lián)有理數(shù)對(duì)”的是____________(只填序號(hào));
(2)若(m,n)是“關(guān)聯(lián)有理數(shù)對(duì)”,則(-m,-n)___________“關(guān)聯(lián)有理數(shù)對(duì)”(填“是”或“不是”);
(3)如果兩個(gè)有理數(shù)是一對(duì)“關(guān)聯(lián)有理數(shù)對(duì)”,其中一個(gè)有理數(shù)是5,求另一個(gè)有理數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=4,點(diǎn)E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.
(1)求證:FH=ED;
(2)當(dāng)AE為何值時(shí),△AEF的面積最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com