如圖,AB、AC是⊙O的弦,OE⊥AB、OF⊥AC,垂足分別為E、F.如果EF=3.5,那么BC=________.

7
分析:由OE垂直于AB,利用垂徑定理得到E為AB的中點(diǎn),同理得到F為AC的中點(diǎn),可得出EF為三角形ABC的中位線,利用三角形的中位線定理得到BC=2EF,即可求出BC的長(zhǎng).
解答:∵OE⊥AB,OF⊥AC,
∴E為AB的中點(diǎn),F(xiàn)為AC的中點(diǎn),即EF為△ABC的中位線,
∴EF=BC,又EF=3.5,
則BC=2EF=7.
故答案為:7
點(diǎn)評(píng):此題考查了垂徑定理,以及三角形的中位線定理,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB,AC是⊙O的兩條切線,切點(diǎn)分別為B,C,連接OB,OC,在⊙O外作∠BAD=∠BAO,A精英家教網(wǎng)D交OB的延長(zhǎng)線于點(diǎn)D.
(1)在圖中找出一對(duì)全等三角形,并進(jìn)行證明;
(2)如果⊙O的半徑為3,sin∠OAC=
12
,試求切線AC的長(zhǎng);
(3)試說(shuō)明:△ABD分別是由△ABO,△ACO經(jīng)過(guò)哪種變換得到的.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB、AC是⊙O的切線,且∠A=54°,則∠BDC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB、AC是⊙O的兩條切線,切點(diǎn)分別為B、C,D是優(yōu)弧
BC
上的一點(diǎn),已知∠BAC=80°,則∠BDC=
50
50
度.(直接寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB,AC是圓的兩條弦,AD是圓的一條直徑,且BC⊥AD,下列結(jié)論中不一定正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB和AC是等腰△ABC的兩腰,CD和BE是兩腰上的高,CD和BE相交于點(diǎn)F.
(1)在不增加輔助線的前提下,這個(gè)圖形中共有哪幾對(duì)全等三角形?請(qǐng)一一寫出.
(2)請(qǐng)你在(1)的結(jié)論中選擇一個(gè)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案