如圖,在△ABC中∠B=90°,AB=6cm,BC=8cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm∕s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),經(jīng)幾秒鐘,使△PBQ的面積等于8cm2?在移動(dòng)過(guò)程中,△PBQ的最大面積是多少?
設(shè)移動(dòng)時(shí)間為t秒,則BQ=2t,AP=t,PB=6-t,
依題意,得S△PBQ=
1
2
×PB×BQ=
1
2
×(6-t)×2t=-t2+6t,
當(dāng)S△PBQ=8時(shí),-t2+6t=8,解得t1=2,t2=4,
∴經(jīng)2秒或4秒鐘,△PBQ的面積等于8cm2;
∵S△PBQ=-t2+6t=-(t-3)2+9,
∴在移動(dòng)過(guò)程中,△PBQ的最大面積是9cm2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c(a≠0)與直線y=kx+b交于A(3,0)、C(0,3)兩點(diǎn),拋物線的頂點(diǎn)坐標(biāo)為Q(2,-1).點(diǎn)P是該拋物線上一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過(guò)點(diǎn)P作PDy軸,交直線AC于點(diǎn)D.
(1)求該拋物線的解析式;
(2)設(shè)P點(diǎn)的橫坐標(biāo)為t,PD的長(zhǎng)度為l,求l與t之間的函數(shù)關(guān)系式,并求l取最大值時(shí),點(diǎn)P的坐標(biāo).
(3)在問(wèn)題(2)的結(jié)論下,若點(diǎn)E在x軸上,點(diǎn)F在拋物線上,問(wèn)是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+6經(jīng)過(guò)點(diǎn)A(-3,0)和點(diǎn)B(2,0).直線y=h(h為常數(shù),且0<h<6)與BC交于點(diǎn)D,與y軸交于點(diǎn)E,與AC交于點(diǎn)F,與拋物線在第二象限交于點(diǎn)G.
(1)求拋物線的解析式;
(2)連接BE,求h為何值時(shí),△BDE的面積最大;
(3)已知一定點(diǎn)M(-2,0).問(wèn):是否存在這樣的直線y=h,使△OMF是等腰三角形?若存在,請(qǐng)求出h的值和點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如果拋物線y=-x2+2(m-1)x+m+1與x軸都交于A,B兩點(diǎn),且A點(diǎn)在x軸的正半軸上,B點(diǎn)在x軸的負(fù)半軸上,OA的長(zhǎng)是a,OB的長(zhǎng)是b.
(1)求m的取值范圍;
(2)若a:b=3:1,求m的值,并寫(xiě)出此時(shí)拋物線的解析式;
(3)設(shè)(2)中的拋物線與y軸交于點(diǎn)C,拋物線的頂點(diǎn)是M,問(wèn):拋物線上是否存在點(diǎn)P,使△PAB的面積等于△BCM面積的8倍?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某大學(xué)的校門(mén)是一拋物線水泥建筑物,大門(mén)的地面寬度為6米,兩側(cè)距地面2米高處各有一個(gè)掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為4米,則校門(mén)的高為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中,拋物線y=x2-x-2過(guò)A、B、C三點(diǎn),在對(duì)稱軸上存在點(diǎn)P,以P、A、C為頂
點(diǎn)三角形為直角三角形.則點(diǎn)P的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

涪陵榨菜是重慶市農(nóng)村經(jīng)濟(jì)中產(chǎn)銷規(guī)模最大、品牌知名度最高、輻射帶動(dòng)能力最強(qiáng)的特色支柱產(chǎn)業(yè).某知名榨菜企業(yè)為順應(yīng)市場(chǎng)需求推出了“五味榨菜”禮盒,成本為20元/盒.年銷售量y(萬(wàn)盒)與售價(jià)x(元/盒)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)結(jié)合圖象求y與x之間的函數(shù)關(guān)系;
(2)求“五味榨菜”禮盒的年獲利w(萬(wàn)元)與x之間的函數(shù)關(guān)系,并求當(dāng)售價(jià)為多少元時(shí)可以獲得最大利潤(rùn),最大利潤(rùn)是多少萬(wàn)元?
(3)去年,公司一直按照(2)中獲得最大利潤(rùn)時(shí)的售價(jià)進(jìn)行銷售,今年在保持售價(jià)不變的基礎(chǔ)上,公司發(fā)力品牌營(yíng)銷,決定拿出部分資金進(jìn)行廣告宣傳.經(jīng)調(diào)查發(fā)現(xiàn):①每年有11萬(wàn)盒產(chǎn)品供給固定客戶,其余產(chǎn)品全部被潛在客房購(gòu)買;②若廣告投入為a萬(wàn)元,則潛在客戶的購(gòu)買量將是去年購(gòu)買量的m倍,則m=-
1
900
(a-30)2+2
;③受公司生產(chǎn)規(guī)模及資金限制,公司的年產(chǎn)量不超過(guò)28萬(wàn)盒,廣告投入不超過(guò)32萬(wàn)元.問(wèn)公司在廣告上投入多少資金可以使公司獲得最大利潤(rùn),最大利潤(rùn)為多少萬(wàn)元?(利潤(rùn)=總銷售額-總成本-廣告費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,要建一個(gè)長(zhǎng)方形養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻,如果用50m長(zhǎng)的籬笆圍成中間有一道籬笆隔墻的養(yǎng)雞場(chǎng),設(shè)它的長(zhǎng)度為xm.
(1)要使雞場(chǎng)面積最大,雞場(chǎng)的長(zhǎng)度應(yīng)為多少m?
(2)如果中間有n(n是大于1的整數(shù))道籬笆隔墻,要使雞場(chǎng)面積最大,雞場(chǎng)的長(zhǎng)應(yīng)為多少m?
比較(1)(2)的結(jié)果,你能得到什么結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用長(zhǎng)8m的鋁合金條制成如圖形狀的矩形窗框,使窗戶的透光面積最大,那么這個(gè)窗戶的最大透光面積是( 。
A.
64
25
m2
B.
4
3
m2
C.
8
3
m2
D.4m2

查看答案和解析>>

同步練習(xí)冊(cè)答案