【題目】已知:如圖1,四邊形ABCD四條邊上的中點(diǎn)分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).

(1)四邊形EFGH的形狀是 , 證明你的結(jié)論.
(2)如圖2,請(qǐng)連接四邊形ABCD的對(duì)角線AC與BD,當(dāng)AC與BD滿足條件時(shí),四邊形EFGH是矩形;證明你的結(jié)論.
(3)你學(xué)過(guò)的哪種特殊四邊形的中點(diǎn)四邊形是矩形?說(shuō)明理由.

【答案】
(1)平行四邊形
(2)互相垂直
(3)

解:菱形的中點(diǎn)四邊形是矩形.理由如下:

如圖3,連結(jié)AC、BD.

∵E、F、G、H分別為四邊形ABCD四條邊上的中點(diǎn),

∴EH∥BD,HG∥AC,F(xiàn)G∥BD,EH= BD,F(xiàn)G= BD,

∴EH∥FG,EH=FG,

∴四邊形EFGH是平行四邊形.

∵四邊形ABCD是菱形,

∴AC⊥BD,

∵EH∥BD,HG∥AC,

∴EH⊥HG,

∴平行四邊形EFGH是矩形.

故答案為:平行四邊形;互相垂直.


【解析】解:(1)四邊形EFGH的形狀是平行四邊形.理由如下:
如圖1,連結(jié)BD.
∵E、H分別是AB、AD中點(diǎn),
∴EH∥BD,EH= BD,
同理FG∥BD,F(xiàn)G= BD,
∴EH∥FG,EH=FG,
∴四邊形EFGH是平行四邊形;
(2)當(dāng)四邊形ABCD的對(duì)角線滿足互相垂直的條件時(shí),四邊形EFGH是矩形.理由如下:
如圖2,連結(jié)AC、BD.
∵E、F、G、H分別為四邊形ABCD四條邊上的中點(diǎn),
∴EH∥BD,HG∥AC,
∵AC⊥BD,
∴EH⊥HG,
又∵四邊形EFGH是平行四邊形,
∴平行四邊形EFGH是矩形;


【考點(diǎn)精析】本題主要考查了矩形的判定方法的相關(guān)知識(shí)點(diǎn),需要掌握有一個(gè)角是直角的平行四邊形叫做矩形;有三個(gè)角是直角的四邊形是矩形;兩條對(duì)角線相等的平行四邊形是矩形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的頂點(diǎn)A、B、C的坐標(biāo)分別是(﹣3,0)、(﹣1,2)、(﹣2,4).

(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1

(2)將△ABC繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°后得到△A2B2C2,畫出△A2B2C2,并寫出點(diǎn)A2、B2、C2的坐標(biāo);

(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)(記過(guò)保留根號(hào)和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:

1)如圖,在平面內(nèi)有不共線的3個(gè)點(diǎn)A,B,C.

a)作直線AB,射線AC,線段BC

b)延長(zhǎng)BC到點(diǎn)D,使CD=BC,連接AD

c)作線段AB的中點(diǎn)E,連接CE;

d)測(cè)量線段CEAD的長(zhǎng)度,直接寫出二者之間的數(shù)量關(guān)系_______.

(2) 5個(gè)大小一樣的正方形制成如圖所示的拼接圖形(陰影部分),請(qǐng)你在圖中的拼接圖形上再接一個(gè)正方形,使新拼接成的圖形經(jīng)過(guò)折疊后能成為一個(gè)封閉的正方體盒子.

注意只需添加一個(gè)符合要求的正方形,并用陰影表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】m(a2﹣b2+c)等于(
A.ma2﹣mb2+m
B.ma2+mb2+mc
C.ma2﹣mb2+mc
D.ma2﹣b2+c

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各數(shù)中,比﹣2小的數(shù)是(
A.﹣3
B.﹣1
C.0
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字-2、l、2,它們除了數(shù)字不同外,其它都完全相同.

(1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字l的小球的概率為 .

(2)小紅先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,再把此球放回袋中攪勻,由小亮從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,請(qǐng)用樹狀圖或表格列出、的所有可能的值,并求出直線不經(jīng)過(guò)第四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)用2730元購(gòu)進(jìn)A、B兩種新型節(jié)能日光燈共60盞,這兩種日光燈的進(jìn)價(jià)、標(biāo)價(jià)如下表所示.

(1)這兩種日光燈各購(gòu)進(jìn)多少盞?

(2)若A型日光燈按標(biāo)價(jià)的9折出售,要使這批日光燈全部售出后商場(chǎng)獲得810元的利潤(rùn),則B型日光燈應(yīng)按標(biāo)價(jià)的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF⊥CD,垂足為O.

(1)若∠EOF=54°,求∠AOC的度數(shù);

(2)①∠AOD的內(nèi)部作射線OG⊥OE;

試探索∠AOG∠EOF之間有怎樣的關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果數(shù)x2倍減去7的差得36,那么根據(jù)題意列方程為______________

查看答案和解析>>

同步練習(xí)冊(cè)答案