兩圓的半徑分別是3cm和5cm,圓心距是8cm,則兩圓位置關(guān)系是(  )
A.相離B.相交C.外切D.內(nèi)切
根據(jù)題意,得:R+r=8cm,即R+r=d,
∴兩圓外切.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=10cm,BC=20cm,動圓⊙O1從點A出發(fā)以5cm/s的速度沿折線AD-DC-CB-BA的方向運動,動圓⊙O2同時從點D出發(fā)以1cm/s的速度沿折線DC-CB-BA的方向運動,當(dāng)O1和O2首次重合,則運動停止,設(shè)運動的時間是ts.
(1)當(dāng)t是多少時,O1和O2首次重合.
(2)如果⊙O1、⊙O2的半徑分別為1cm和2cm,那么t為何值時,⊙O1和⊙O2相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙O的半徑為R,⊙P的半徑為r(r<R),且⊙P的圓心P在⊙O上.設(shè)C是⊙P上一點,過點C與⊙P相切的直線交⊙O于A、B兩點.
(1)若點C在線段OP上,(如圖1).求證:PA•PB=2Rr;
(2)若點C不在線段OP上,但在⊙O內(nèi)部如圖(2).此時,(1)中的結(jié)論是否成立?若成立,請給予證明;若不成立,說明理由;
(3)若點C在⊙O的外部,如圖(3).此時,PA•PB與R,r的關(guān)系又如何?請直接寫出,不要求給予證明或說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD的對角線AC、BD交于點M,且分正方形為四個三角形,⊙O1、⊙O2、⊙O3、⊙O4分別為△AMB、△BMC、△CMD、△DMA的內(nèi)切圓,已知AB=1.則⊙O1、⊙O2、⊙O3、⊙O4.所夾的中心(陰影)部分的面積為( 。
A.
(4-π)(3-2
2
)
16
B.
(3-2
2
4
C.
(4-π)(3-2
2
)
4
D.
1-π
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩圓的半徑分別為R和r,圓心距為1,且R、r分別是方程x2-9x+20=0的兩個根,則兩圓的位置關(guān)系是( 。
A.相交B.外切C.內(nèi)切D.外離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,外切于P點的⊙O1和⊙O2的半徑分別為2cm和4cm,連心線交⊙O1于點A,交⊙O2于點B,AC與⊙O2相切于點C,連接PC,則PC的長為(  )
A.2cmB.3cmC.4cmD.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

半徑為3cm的⊙O1與半徑為5cm的⊙O2相內(nèi)切,則兩個圓的圓心之間的距離O1O2=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙O1與⊙O2內(nèi)切于P點,過P點作直線交⊙O1于A點,交⊙O2于B點,C為⊙O1上一點,過B點作⊙O2的切線交直線AC于Q點.
(1)求證:AC•AQ=AP•AB;
(2)若將兩圓內(nèi)切改為外切,其它條件不變,(1)中結(jié)論是否仍然成立?______請你畫出圖形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,以正六邊形的頂點為圓心,2cm為半徑的六個圓中,相鄰兩圓外切,在正六邊形內(nèi)部的陰影部分能畫出最大圓的半徑等于( 。
A.2cmB.3cmC.4cmD.2cm

查看答案和解析>>

同步練習(xí)冊答案