【題目】在正方形ABCD中,點P是CD邊上一動點,連接PA,分別過點B、D作、,垂足分別為E、F.
如圖,請?zhí)骄?/span>BE、DF、EF這三條線段的長度具有怎樣的數(shù)量關系?
若點P在DC的延長線上,如圖,那么這三條線段的長度之間又具有怎樣的數(shù)量關系?
若點P在CD的延長線上,如圖,請直接寫出結論.
【答案】(1);(2);(3)
【解析】
試題(1)在圖①中BE、DF、EF這三條線段長度具有這樣的數(shù)量關系:BE-DF=EF,理由為:由BE垂直于AP,DF垂直于AP,得到一對直角相等,再由四邊形ABCD為正方形,得到AB=AD,且∠BAD為直角,利用同角的余角相等得到一對角相等,利用AAS得到三角形ABE與三角形DFA全等,利用全等三角形對應邊相等得到BE=AF,AE=DF,根據(jù)AF-AE=EF,等量代換即可得證;(2)在圖②中BE、DF、EF這三條線段長度具有這樣的數(shù)量關系:DF-BE=EF,理由同(1);(3)在圖③中BE、DF、EF這三條線段長度具有這樣的數(shù)量關系:DF+BE=EF,理由同(1).
試題解析:(1)在圖①中BE、DF、EF這三條線段長度具有這樣的數(shù)量關系:BE-DF=EF;
證明:∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=90°,
又∵∠AFD=90°,
∴∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AE-AF=EF,
∴DF-BE=EF.
(2)在圖②中BE、DF、EF這三條線段長度具有這樣的數(shù)量關系:DF-BE=EF;
∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=90°,
又∵∠AFD=90°,
∴∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AE-AF=EF,
∴DF-BE=EF.
(3)在圖③中BE、DF、EF這三條線段長度具有這樣的數(shù)量關系:DF+BE=EF,
理由為:∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=90°,
又∵∠AFD=90°,
∴∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AE+AF=EF,
∴DF+BE=EF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上兩定點A、B對應的數(shù)分別為-18和14,現(xiàn)在有甲、乙兩只電子螞蟻分別從A、B同時出發(fā),沿著數(shù)軸爬行,速度分別為每秒1.5個單位和1.7個單位,它們第一次相向爬行1秒,第二次反向爬行2秒,第三次相向爬行3秒,第四次反向爬行4秒,第五次相向爬行5秒,……,按如此規(guī)律,則它們第一次相遇所需的時間為( )
A. 55秒 B. 190秒 C. 200秒 D. 210秒
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,某企業(yè)推出一種“CNG”改燒汽油為天然氣的裝置,每輛車改裝費為b元,據(jù)市場調(diào)查知:每輛車改裝前、后的燃料費(含改裝費)y0,y1(元)與正常運營時間x(天)之間分別滿足關系式:y0=ax,y1=b+50x,圖象如圖所示.
(1)每輛車改裝前每天的燃料費a= 元,每輛車的改裝費b= 元,正常運營時間 天后,就可以從節(jié)省的燃料費中收回改裝成本;
(2)某出租汽車公司一次性改裝了100輛出租車,因而正常運行多少天后共節(jié)省燃料費40萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(-3,0),點B在軸上,直線y=-2x+a經(jīng)過點B與軸交于點(0, 6),直線AD與直線y=-2x+a相交于點D(-1,n).
(1)求直線AD的表達式;
(2)點M是直線y=-2x+a上的一點(不與點B重合),且點M的橫坐標為m,求△ABM的面積S與m之間的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點M為直線AB上一動點, 都是等邊三角形,連接BN
求證: ;
分別寫出點M在如圖2和圖3所示位置時,線段AB、BM、BN三者之間的數(shù)量關系不需證明;
如圖4,當時,證明: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點D、E.
(1)求證:△ABC為直角三角形.
(2)求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩盞路燈桿相距20米,一天晚上,當小明從燈甲底部向燈乙底部直行16米時,發(fā)現(xiàn)自己的身影頂部正好接觸到路燈乙的底部.已知小明的身高為1.6米,那么路燈甲的高為( )
A.7米
B.8米
C.9米
D.10米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=nAD,點E,F(xiàn)分別在邊AB,AD上且不與頂點A,B,D重合,∠AEF=∠BCE,圈O過A,E,F(xiàn)三點.
(1)求證:圈O與CE相切與點E;
(2)如圖1,若AF=2FD且∠AEF=30°,求n的值;
(3)如圖2.若EF=EC且圈O與邊CD相切,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com