【題目】如圖,數(shù)軸上兩定點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為-18和14,現(xiàn)在有甲、乙兩只電子螞蟻分別從A、B同時(shí)出發(fā),沿著數(shù)軸爬行,速度分別為每秒1.5個(gè)單位和1.7個(gè)單位,它們第一次相向爬行1秒,第二次反向爬行2秒,第三次相向爬行3秒,第四次反向爬行4秒,第五次相向爬行5秒,……,按如此規(guī)律,則它們第一次相遇所需的時(shí)間為( )
A. 55秒 B. 190秒 C. 200秒 D. 210秒
【答案】B
【解析】
根據(jù)兩點(diǎn)間的距離,可得BA的長(zhǎng),根據(jù)爬行的規(guī)律,可得以后每?jī)纱慰梢郧斑M(jìn)3.2,可得爬行的總次數(shù),根據(jù)有理數(shù)的加法,可得答案.
AB之間的距離為14-(-18)=32,
第一次相向爬行1秒后,兩只螞蟻相距32-1×(1.5+1.7)=28.8,
以后每?jī)纱慰梢郧斑M(jìn)3.2,
∴28.8÷3.2=9,
則最后一次是第19次,即甲乙兩只電子螞蟻相向爬行19秒,
故第一次相遇的時(shí)間為1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19=(1+19)19÷2=190(秒),
答:它們第一次相遇時(shí)所需的時(shí)間為190秒.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O是直線AB上一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)①、如圖1,若∠AOC=50°,求∠DOE的度數(shù);
②、如圖1,若∠AOC=α,直接寫出∠DOE的度數(shù)(用含α的代數(shù)式表示);
(2)將圖1中的∠COD按順時(shí)針方向旋轉(zhuǎn)至圖2所示的位置.
探究∠AOC與∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+bx+c與x軸交于A(5,0)、B(﹣1,0)兩點(diǎn),過點(diǎn)A作直線AC⊥x軸,交直線y=2x于點(diǎn)C;
(1)求該拋物線的解析式;
(2)求點(diǎn)A關(guān)于直線y=2x的對(duì)稱點(diǎn)A′的坐標(biāo),判定點(diǎn)A′是否在拋物線上,并說明理由;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交線段CA′于點(diǎn)M,是否存在這樣的點(diǎn)P,使四邊形PACM是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的小圓圈按一定規(guī)律所組成的,其中第①個(gè)圖形中一共有6個(gè)小圓圈,第②個(gè)圖形中一共有9個(gè)小圓圈,第③個(gè)圖形中一共有12個(gè)小圓圈,…,按此規(guī)律排列,則第⑩個(gè)圖形中小圓圈的個(gè)數(shù)為( )
A. 24 B. 27 C. 30 D. 33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=mx+10m與x軸負(fù)半軸、y軸正半軸分別交于A、B兩點(diǎn).
(1)當(dāng)OA=OB時(shí),試確定直線l的函數(shù)表達(dá)式;
(2)在(1)的條件下,如圖2,設(shè)Q為直線AB上一點(diǎn),作直線OQ,過A、B兩點(diǎn)分別作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的長(zhǎng);
(3)當(dāng)m取不同的值時(shí),點(diǎn)B在y軸正半軸上運(yùn)動(dòng),分別以OB、AB為邊,點(diǎn)B為直角頂點(diǎn)在第一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點(diǎn),如圖3.問:當(dāng)點(diǎn)B在 y軸正半軸上運(yùn)動(dòng)時(shí),試猜想PB的長(zhǎng)是否為定值?若是,請(qǐng)求出其值;若不是,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,∠AOB和∠COD共頂點(diǎn)O,OB和OD重合,OM為∠AOD的平分線,ON為∠BOC的平分線,∠AOB=α,∠COD=β.
(1)如圖2,若α=90°,β=30°,則∠MON=________;
(2)若將∠COD繞O逆時(shí)針旋轉(zhuǎn)至圖3的位置,求∠MON;(用α,β表示)
(3)如圖4,若α=2β,∠COD繞O逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為3°/秒,∠AOB繞O同時(shí)逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為1°/秒(轉(zhuǎn)到OC與OA共線時(shí)停止運(yùn)動(dòng)),且OE平分∠BOD,請(qǐng)判斷∠COE與∠AOD的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx經(jīng)過A(4,0),B(1,3)兩點(diǎn),點(diǎn)B、C關(guān)于拋物線的對(duì)稱軸l對(duì)稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線的解析式;
(2)若點(diǎn)M在直線BH上運(yùn)動(dòng),點(diǎn)N在x軸上運(yùn)動(dòng),是否存在這樣的點(diǎn)M、N,使得以點(diǎn)M為直角頂點(diǎn)的△CNM是等腰直角三角形?若存在,請(qǐng)求出點(diǎn)M、N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)()×(﹣36)
(2)﹣32+(﹣)2×(﹣)+|﹣22|+(﹣1)2013;
(3)36×(﹣99);
(4)﹣13×﹣0.34×+×(﹣13)﹣×0.34(用簡(jiǎn)便方法計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)P是CD邊上一動(dòng)點(diǎn),連接PA,分別過點(diǎn)B、D作、,垂足分別為E、F.
如圖,請(qǐng)?zhí)骄?/span>BE、DF、EF這三條線段的長(zhǎng)度具有怎樣的數(shù)量關(guān)系?
若點(diǎn)P在DC的延長(zhǎng)線上,如圖,那么這三條線段的長(zhǎng)度之間又具有怎樣的數(shù)量關(guān)系?
若點(diǎn)P在CD的延長(zhǎng)線上,如圖,請(qǐng)直接寫出結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com