【題目】為了提高學(xué)生的身體素質(zhì),某班級決定開展球類活動,要求每個學(xué)生必須在籃球、足球、排球、乒乓球、羽毛球中選擇一項參加訓(xùn)練(只選擇一項),根據(jù)學(xué)生的報名情況制成如下統(tǒng)計表:

項目

籃球

足球

排球

乒乓球

羽毛球

報名人數(shù)

12

8

4

a

10

占總?cè)藬?shù)的百分比

24%

b

1)該班學(xué)生的總?cè)藬?shù)為   人;

2)由表中的數(shù)據(jù)可知:a   ,b   ;

3)報名參加排球訓(xùn)練的四個人為兩男(分別記為AB)兩女(分別記為C、D),現(xiàn)要隨機(jī)在這4人中選2人參加學(xué)校組織的校級訓(xùn)練,請用列表或樹狀圖的方法求出剛好選中一男一女的概率.

【答案】1)該班學(xué)生的總?cè)藬?shù)為50人;(21620%;(3)剛好選中一男一女的概率為

【解析】

1)用籃球的人數(shù)除以其所占百分比即可得總?cè)藬?shù);
2)根據(jù)各項目的人數(shù)之和等于總?cè)藬?shù)可求得a的值,用羽毛球的人數(shù)除以總?cè)藬?shù)可得b的值;
3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與選中一男一女的情況,再利用概率公式即可求得答案.

1)該班學(xué)生的總?cè)藬?shù)為12÷24%50(人),

故答案為:50

2a50﹣(12+8+4+10)=16

b×100%20%,

故答案為:16,20%;

3)畫樹狀圖如下:

由樹狀圖知,共有12種等可能結(jié)果,其中剛好選中一男一女的有8種結(jié)果,

∴剛好選中一男一女的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,,在上取點(diǎn),使得,若

1)求證:

2)若平分,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=ADAC是∠BAD的角平分線.

1)求證:△ABC≌△ADC

2)若∠BCD60°,AC=BC,求∠ADB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線x軸交于AB兩點(diǎn)(OAOB),與y軸交于點(diǎn)C

1)求點(diǎn)A,BC的坐標(biāo);

2)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個單位長度的速度向點(diǎn)B運(yùn)動,同時點(diǎn)E也從點(diǎn)O出發(fā),以每秒1個單位長度的速度向點(diǎn)C運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為t秒(0t2).

過點(diǎn)Ex軸的平行線,與BC相交于點(diǎn)D(如圖所示),當(dāng)t為何值時,的值最小,求出這個最小值并寫出此時點(diǎn)E,P的坐標(biāo);

在滿足的條件下,拋物線的對稱軸上是否存在點(diǎn)F,使△EFP為直角三角形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長為2的正方形,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A、E兩點(diǎn),且點(diǎn)E的坐標(biāo)為(﹣,0),以0C為直徑作半圓,圓心為D

1)求二次函數(shù)的解析式;

2)求證:直線BE是⊙D的切線;

3)若直線BE與拋物線的對稱軸交點(diǎn)為PM是線段CB上的一個動點(diǎn)(點(diǎn)M與點(diǎn)B,C不重合),過點(diǎn)MMNBEx軸與點(diǎn)N,連結(jié)PMPN,設(shè)CM的長為tPMN的面積為S,求St的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B 的坐標(biāo)為(8,4),反比例函數(shù)y=(k>0)的圖象分別交邊BCAB 于點(diǎn)D、E,連結(jié)DE,△DEF與△DEB關(guān)于直線DE對稱,當(dāng)點(diǎn)F恰好落在線段OA上時,則k的值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了   名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補(bǔ)充完整;

(3)該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?

(4)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸、y軸交于AB兩點(diǎn),交反比例函數(shù)于C、D兩點(diǎn),DEx軸于點(diǎn)E,已知C點(diǎn)的坐標(biāo)是(6,-1),DE=3

(1)求反比例函數(shù)與一次函數(shù)的解析式

(2)根據(jù)圖象直接回答:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.

(3)OAD的面積SOAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中B(﹣1,0),A0,m),m0,將線段AB線繞B點(diǎn)逆時針旋轉(zhuǎn)90°得BC,AC的中點(diǎn)為D點(diǎn).

1m2時,畫圖并直接寫出D點(diǎn)的坐標(biāo)   ;

2)若雙曲線x0)過C,D兩點(diǎn),求反比例的解析式;

3)在(2)的條件下,點(diǎn)PC點(diǎn)左側(cè),且在雙曲線上,以CP為邊長畫正方形CPEF,且點(diǎn)Ex軸上,求P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案