【題目】如圖,在等腰中,為的中點(diǎn),過(guò)點(diǎn)作,交于點(diǎn),交于點(diǎn).若,則的長(zhǎng)為( )
A.B.C.D.
【答案】B
【解析】
首先連接BD,利用等腰直角三角形的性質(zhì),根據(jù)ASA易證得△FDB≌△EDC,所以四邊形的面積是三角形ABC的一半,利用三角形的面積公式即可求出AB的長(zhǎng).
如圖,連接BD,
∵等腰直角三角形ABC中,D為AC邊上中點(diǎn),
∴BD⊥AC(三線合一),BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C,
又∵DE⊥DF,
∴∠EDC+∠BDE=∠FDB+∠BDE,
∴∠EDC=∠FDB,
在△FDB與△EDC中,,
∴△FDB≌△EDC(ASA),
∴,
∵等腰直角三角形ABC中,D為AC邊上中點(diǎn),
∴
∴,即,
∴.
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B坐標(biāo)為(-3,0),點(diǎn)A是y軸正半軸上一點(diǎn),且AB=5,點(diǎn)P是x軸上位于點(diǎn)B右側(cè)的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0)
(1)點(diǎn)A的坐標(biāo)為( )
(2)當(dāng)△ABP是等腰三角形時(shí),求P點(diǎn)的坐標(biāo);
(3)如圖2,過(guò)點(diǎn)P作PE⊥AB交線段AB于點(diǎn)E,連接OE.若點(diǎn)A關(guān)于直線OE的對(duì)稱(chēng)點(diǎn)為A',當(dāng)點(diǎn)A'恰好落在直線PE上時(shí),BE=________(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等腰內(nèi)一點(diǎn),,且,,.將繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)后,得到.
直接寫(xiě)出旋轉(zhuǎn)的最小角度;
求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標(biāo)系中兩點(diǎn),其中m為常數(shù),且m>0,E(0,n)為y軸上一動(dòng)點(diǎn),以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫(huà)射線OA,把△ADC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過(guò)E,A′兩點(diǎn).
(1)填空:∠AOB= °,用m表示點(diǎn)A′的坐標(biāo):A′( , );
(2)當(dāng)拋物線的頂點(diǎn)為A′,拋物線與線段AB交于點(diǎn)P,且時(shí),△D′OE與△ABC是否相似?說(shuō)明理由;
(3)若E與原點(diǎn)O重合,拋物線與射線OA的另一個(gè)交點(diǎn)為點(diǎn)M,過(guò)M作MN⊥y軸,垂足為N:
①求a,b,m滿(mǎn)足的關(guān)系式;
②當(dāng)m為定值,拋物線與四邊形ABCD有公共點(diǎn),線段MN的最大值為10,請(qǐng)你探究a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B是數(shù)軸上兩點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)是-2,點(diǎn)B對(duì)應(yīng)的數(shù)是2. △ABC是等邊三角形,D是AB中點(diǎn). 點(diǎn)M在AC邊上,且AM=3CM.
(1)求CD長(zhǎng).
(2)點(diǎn)P是CD上的動(dòng)點(diǎn),確定點(diǎn)P使得PM+PA的值最小,并求出PM+PA的最小值.
(3)過(guò)點(diǎn)M的直線與數(shù)軸交于點(diǎn)Q,且QM.點(diǎn)Q對(duì)應(yīng)的數(shù)是t,結(jié)合圖形直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半⊙O的半徑為2,點(diǎn)P是⊙O直徑AB延長(zhǎng)線上的一點(diǎn),PT切⊙O于點(diǎn)T,M是OP的中點(diǎn),射線TM與半⊙O交于點(diǎn)C.若∠P=20°,則圖中陰影部分的面積為( 。
A. 1+ B. 1+ C. 2sin20°+ D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;
(1)求證:AM=FM;
(2)若∠AMD=a.求證:=cosα.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xoy中,直線y=x+交x軸于點(diǎn)B,交y軸于點(diǎn)A,過(guò)點(diǎn)C(1,0)作x軸的垂線l,將直線l繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°).
(1)當(dāng)直線l與直線y=x+平行時(shí),求出直線l的解析式;
(2)若直線l經(jīng)過(guò)點(diǎn)A,①求線段AC的長(zhǎng);②直接寫(xiě)出旋轉(zhuǎn)角α的度數(shù);
(3)若直線l在旋轉(zhuǎn)過(guò)程中與y軸交于D點(diǎn),當(dāng)△ABD、△ACD、△BCD均為等腰三角形時(shí),直接寫(xiě)出符合條件的旋轉(zhuǎn)角α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為圓O的直徑,點(diǎn)C為圓O上一點(diǎn),若∠BAC=∠CAM,過(guò)點(diǎn)C作直線l垂直于射線AM,垂足為點(diǎn)D.
(1)試判斷CD與圓O的位置關(guān)系,并說(shuō)明理由;
(2)若直線l與AB的延長(zhǎng)線相交于點(diǎn)E,圓O的半徑為3,并且∠CAB=30°,求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com