【題目】如圖,在等腰中,的中點(diǎn),過(guò)點(diǎn),交于點(diǎn),交于點(diǎn).,則的長(zhǎng)為(

A.B.C.D.

【答案】B

【解析】

首先連接BD,利用等腰直角三角形的性質(zhì),根據(jù)ASA易證得△FDB≌△EDC,所以四邊形的面積是三角形ABC的一半,利用三角形的面積公式即可求出AB的長(zhǎng).

如圖,連接BD,


∵等腰直角三角形ABC中,DAC邊上中點(diǎn),
BDAC(三線合一),BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=C,
又∵DEDF

∴∠EDC+BDE=FDB+BDE,
∴∠EDC=FDB,
在△FDB與△EDC中,,
∴△FDB≌△EDCASA),

∵等腰直角三角形ABC中,DAC邊上中點(diǎn),

,即,

.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B坐標(biāo)為(-3,0),點(diǎn)Ay軸正半軸上一點(diǎn),且AB=5,點(diǎn)Px軸上位于點(diǎn)B右側(cè)的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0

1)點(diǎn)A的坐標(biāo)為( )

2)當(dāng)ABP是等腰三角形時(shí),求P點(diǎn)的坐標(biāo);

3)如圖2,過(guò)點(diǎn)PPEAB交線段AB于點(diǎn)E,連接OE.若點(diǎn)A關(guān)于直線OE的對(duì)稱(chēng)點(diǎn)為A',當(dāng)點(diǎn)A'恰好落在直線PE上時(shí),BE=________(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等腰內(nèi)一點(diǎn),,且,.將繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)后,得到

直接寫(xiě)出旋轉(zhuǎn)的最小角度;

的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,B2m0),C3m0)是平面直角坐標(biāo)系中兩點(diǎn),其中m為常數(shù),且m0E0,n)為y軸上一動(dòng)點(diǎn),以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫(huà)射線OA,把ADC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°A′D′C′,連接ED′,拋物線)過(guò)E,A′兩點(diǎn).

1)填空:∠AOB= °,用m表示點(diǎn)A′的坐標(biāo):A′ , );

2)當(dāng)拋物線的頂點(diǎn)為A′,拋物線與線段AB交于點(diǎn)P,且時(shí),D′OEABC是否相似?說(shuō)明理由;

3)若E與原點(diǎn)O重合,拋物線與射線OA的另一個(gè)交點(diǎn)為點(diǎn)M,過(guò)MMN⊥y軸,垂足為N

a,b,m滿(mǎn)足的關(guān)系式;

當(dāng)m為定值,拋物線與四邊形ABCD有公共點(diǎn),線段MN的最大值為10,請(qǐng)你探究a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B是數(shù)軸上兩點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)是-2,點(diǎn)B對(duì)應(yīng)的數(shù)是2. ABC是等邊三角形,DAB中點(diǎn). 點(diǎn)MAC邊上,且AM=3CM.

1)求CD長(zhǎng).

2)點(diǎn)PCD上的動(dòng)點(diǎn),確定點(diǎn)P使得PM+PA的值最小,并求出PM+PA的最小值.

3)過(guò)點(diǎn)M的直線與數(shù)軸交于點(diǎn)Q,且QM.點(diǎn)Q對(duì)應(yīng)的數(shù)是t,結(jié)合圖形直接寫(xiě)出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半⊙O的半徑為2,點(diǎn)P是⊙O直徑AB延長(zhǎng)線上的一點(diǎn),PT切⊙O于點(diǎn)T,MOP的中點(diǎn),射線TM與半⊙O交于點(diǎn)C.若∠P=20°,則圖中陰影部分的面積為( 。

A. 1+ B. 1+ C. 2sin20°+ D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到矩形CEFG,連接DGEFH,連接AFDGM;

(1)求證:AM=FM;

(2)若∠AMD=a.求證:=cosα.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xoy中,直線y=x+x軸于點(diǎn)B,交y軸于點(diǎn)A,過(guò)點(diǎn)C1,0)作x軸的垂線l,將直線l繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為αα180°.

1)當(dāng)直線l與直線y=x+平行時(shí),求出直線l的解析式;

2)若直線l經(jīng)過(guò)點(diǎn)A,①求線段AC的長(zhǎng);②直接寫(xiě)出旋轉(zhuǎn)角α的度數(shù);

3)若直線l在旋轉(zhuǎn)過(guò)程中與y軸交于D點(diǎn),當(dāng)ABDACD、BCD均為等腰三角形時(shí),直接寫(xiě)出符合條件的旋轉(zhuǎn)角α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為圓O的直徑,點(diǎn)C為圓O上一點(diǎn),若∠BAC=∠CAM,過(guò)點(diǎn)C作直線l垂直于射線AM,垂足為點(diǎn)D.

(1)試判斷CD與圓O的位置關(guān)系,并說(shuō)明理由;

(2)若直線lAB的延長(zhǎng)線相交于點(diǎn)E,圓O的半徑為3,并且∠CAB=30°,求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案