如圖,已知平面直角坐標系xOy,拋物線y=-x2+bx+c過點A(4,0)、B(1,3).
(1)求該拋物線的表達式,并寫出該拋物線的頂點坐標;
(2)在x軸的正半軸上是否存在點P,使得△PAB是等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
分析:(1)根據(jù)拋物線y=-x2+bx+c過點A(4,0)、B(1,3)列出關(guān)于b和c的二元一次方程組,求出b和c,拋物線解析式求出,頂點坐標即可求出;
(2)假設(shè)存在P(a,0),分三種情況進行討論,①當PB=PA時,②當PB=BA時,③當PA=AB時,分別求出滿足△PAB是等腰三角形時a的值.
解答:解:(1)∵拋物線y=-x2+bx+c過點A(4,0)、B(1,3),
-16+4b+c=0
-1+b+c=3
,
b=4
c=0
,
∴拋物線的表達式y(tǒng)=-x2+4x=-(x-2)2+4,
∴拋物線的頂點坐標為(2,4),

(2)假設(shè)存在P(a,0),
①當PB=PA時,
(1-a)2+32
=|4-a|,
解得a=1,
此時P點坐標為(1,0),
②當PB=BA時,
(1-a)2+32
=
32+(1-4)2
,
解得a=-2,
此時P點坐標為(-2,0),
③當PA=AB時,
|a-4|=3
2
,
解得a=4+3
2
或a=4-3
2
,
此時P點坐標為(4+3
2
,0)或(4-3
2
,0),
綜上所述,滿足條件P的坐標(1,0)、(-2,0)、(4+3
2
,0)或(4-3
2
,0).
點評:本題主要考查二次函數(shù)的綜合題,解答本題的關(guān)鍵是正確求出函數(shù)的解析式,解答第二問的時候需要分三種情況進行討論,同學(xué)們很容易出現(xiàn)漏解的情況,請同學(xué)們解答的時候稍加注意.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標系中,一次函數(shù)的圖象與y軸交于點A,

與x軸交于點B,與反比例函數(shù)的圖象分別交于點M,N,已知△AOB的面積為1,點M的縱坐

標為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆安徽滁州八年級下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題

已知:如圖1,平面直角坐標系中,四邊形OABC是矩形,點A,C的坐

標分別為(6,0),(0,2).點D是線段BC上的一個動點(點D與點B,C不重合),過點D作直線=-交折線O-A-B于點E.

(1)在點D運動的過程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如圖2,當點E在線段OA上時,矩形OABC關(guān)于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點D,M,O′A′分別交CB,OA于點N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長為____________.

    

 

查看答案和解析>>

同步練習(xí)冊答案