點(diǎn)A(a,b)和B關(guān)于x軸對稱,而點(diǎn)B與點(diǎn)C(2,3)關(guān)于y軸對稱,那么,a=________,b=________,點(diǎn)A和C的位置關(guān)系是________.

-2    -3    關(guān)于原點(diǎn)對稱
分析:平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于x軸的對稱點(diǎn)的坐標(biāo)是(x,-y),記憶方法是結(jié)合平面直角坐標(biāo)系的圖形記憶,另一種記憶方法是記。宏P(guān)于橫軸的對稱點(diǎn),橫坐標(biāo)不變,縱坐標(biāo)變成相反數(shù).
解答:∵B與點(diǎn)C(2,3)關(guān)于y軸對稱,
∴B點(diǎn)的坐標(biāo)是(-2,3),
又∵點(diǎn)A(a,b)和B關(guān)于x軸對稱,
∴點(diǎn)A的坐標(biāo)是(-2,-3),
則a=-2,b=-3;
∴點(diǎn)A和點(diǎn)C的橫縱坐標(biāo)都互為相反數(shù),
∴點(diǎn)A和C的位置關(guān)系是關(guān)于原點(diǎn)對稱.
點(diǎn)評:本題考查平面直角坐標(biāo)系關(guān)于坐標(biāo)軸成軸對稱的兩點(diǎn)的坐標(biāo)之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀故事,回答問題:話說某村子里有一座關(guān)帝廟,廟里供奉著一尊關(guān)二爺?shù)裣瘢瑩?jù)老人們說關(guān)二爺非常靈驗(yàn),有求必應(yīng),因此,慕名而來抽簽卜卦的善男信女絡(luò)繹不絕,村子里凡難于決斷的在事小事,人們也總是喜歡到廟里燒上三柱香,請關(guān)二爺定奪.話說這一日,為了人們趕廟會時出入的方便,有人建議在廟宇的圍墻北面再放一個偏門,但同時也有人擔(dān)心這樣會破壞廟宇的風(fēng)水,一時間公說公有理,婆說婆有理,雙方爭執(zhí)不下,大家自然一致想到請關(guān)二爺定奪.
按照習(xí)慣,爭議雙方到關(guān)二爺面前,請村里的長輩點(diǎn)上三柱香,拿出兩塊一模一樣,十分精致的竹板,竹板只有正面和反面之分,然后口中念想:關(guān)二爺在上,弟子今有一事不明,恭請關(guān)二爺定奪.如果可以放個北門請關(guān)二爺連允三次(如果竹板落地后,一個正面朝上,一個反面朝上,則稱為“允”,否則稱為“不允”).
(1)請你算一算:關(guān)二爺允許的概率有多大?
(2)由于村里大多數(shù)人都認(rèn)為放這個北門十分必要,但老人們還是堅(jiān)持要讓關(guān)二爺定奪,你有會么辦法能提高關(guān)二爺允許的概率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、在圖1所示編號為(1)、(2)、(3)、(4)的四個三角形中,關(guān)于y軸對稱的兩個三角形的編號為
①和②
;關(guān)x軸對稱的兩個三角形的編號為
②和③
;在圖2中,畫出與△ABC關(guān)于x軸對稱的△A1B1C1,并分別寫出點(diǎn)A1、B1、C1的坐標(biāo)為
(2,1),(1,3),(4,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北京)對于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下的定義:若⊙C上存在兩個點(diǎn)A、B,使得∠APB=60°,則稱P為⊙C的關(guān)聯(lián)點(diǎn).已知點(diǎn)D(
1
2
1
2
),E(0,-2),F(xiàn)(2
3
,0).
(1)當(dāng)⊙O的半徑為1時,
①在點(diǎn)D、E、F中,⊙O的關(guān)聯(lián)點(diǎn)是
D,E
D,E

②過點(diǎn)F作直線l交y軸正半軸于點(diǎn)G,使∠GFO=30°,若直線l上的點(diǎn)P(m,n)是⊙O的關(guān)聯(lián)點(diǎn),求m的取值范圍;
(2)若線段EF上的所有點(diǎn)都是某個圓的關(guān)聯(lián)點(diǎn),求這個圓的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課本練習(xí)拓展:
(1)如圖1,在正方形ABCD中,E是BC上的一點(diǎn),△ABE經(jīng)過旋轉(zhuǎn)后得到△ADF,
①旋轉(zhuǎn)中心是點(diǎn)
A
A
;旋轉(zhuǎn)角度最少是
90
90
度.
②愛動腦筋的小兵,在CD邊上取點(diǎn)H使得∠HAE=45°,他發(fā)現(xiàn):HE=BE+HD,他的發(fā)現(xiàn)正確嗎?請你判斷并說明理由.
(2)思維闖關(guān):
如圖2,在直角梯形ABCD中AD∥BC(BC>AD),∠B=90°BC=AB=6,E是 AB上一點(diǎn),且∠DCE=45°,BE=2,則DE的長=
5
5
.(小兵運(yùn)用解答(1)中所積累的經(jīng)驗(yàn)和知識做出了該題)
(3)動手闖過:
①小明有一塊如圖3所示的紙片,其中∠A=∠C=90°,AB=AD.小明請小兵只剪一刀后把它拼成正方形,請你幫助小兵在圖中畫出剪拼得示意圖.
②小兵好朋友小紅現(xiàn)有兩塊同小明一樣的紙片,如圖4,小兵能否在每塊上各剪一刀,然后拼成一個大的正方形?若能,請你畫出剪法和拼法的示意圖;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.試解答下列問題:
(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)
∠A+∠D=∠B+∠C
∠A+∠D=∠B+∠C
;
(2)仔細(xì)觀察,在圖2中“8字形”的個數(shù):
6
6
個;
(3)在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.利用(1)的結(jié)論,試求∠P的度數(shù);
(4)如果圖2中∠D和∠B為任意角時,其他條件不變,試問∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系.(直接寫出結(jié)論即可)

查看答案和解析>>

同步練習(xí)冊答案