【題目】畫圖并填空,如圖:方格紙中每個小正方形的邊長都為1,ABC的頂點都在方格紙的格點上,將ABC經(jīng)過一次平移后得到A'B'C'.圖中標出了點C的對應點C'.

(1)請畫出平移后的A'B'C';

(2)若連接AA',BB',則這兩條線段的關系是 ;

(3)利用網(wǎng)格畫出ABCAC邊上的中線BD以及AB邊上的高CE;

(4)線段AB在平移過程中掃過區(qū)域的面積為

【答案】(1)圖見解析;(2)平行且相等;(3)見解析;(4)20;

【解析】1)直接利用平移的性質(zhì)得出對應點位置進而得出答案;

2)直接利用平移的性質(zhì)得出兩條線段之間的關系

3)利用網(wǎng)格得出AC的中點即可得出答案;利用網(wǎng)格得出高CE即可得出答案

4)直接利用線段AB在平移過程中掃過區(qū)域的面積進而得出答案.

1)如圖所示,(2)根據(jù)平移的性質(zhì)可得AABB′,AA′=BB′.

故答案為:平行且相等

3)如圖所示;

4)線段AB在平移過程中掃過區(qū)域的面積=S四邊形AABB=5×4=20

故答案為:20

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點EG

(1)若∠AFH60°,∠CHF50°,則∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度數(shù).

(拓展)如圖②,∠AFH和∠CHI的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點EG.若∠AFH+CHFα,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,∠A∶∠ABC∶∠ACB=3∶4∶5,BD,CE分別是邊AC,AB上的高,BD,CE相交于H,求∠BHC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,不添加輔助線,請寫出一個能判斷EB∥AC的條件:___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知直線y= x+2與x軸交于點A,與y軸交于點C,拋物線y=ax2+4ax+b經(jīng)過A.C兩點,且與x軸交于另一點B.

(1)求拋物線的解析式;
(2)若點Q在拋物線上,且△AQC與△BQC面積相等,求點Q的坐標;
(3)如圖2,P為△AOC外接圓上弧ACO的中點,直線PC交x軸于點D,∠EDF=∠ACO,當∠EDF繞點D旋轉(zhuǎn)時,DE交直線AC于點M,DF交y軸負半軸于點N.請你探究:CN﹣CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司有、兩種型號的客車共20輛,它們的載客量、每天的租金如下表所示.已知在20輛客車都坐滿的情況下,共載客720人.

A型號客車

B型號客車

載客量(人/輛)

45

30

租金(元/輛)

600

450

(1)求、兩種型號的客車各有多少輛?

(2)某中學計劃租用兩種型號的客車共8輛,同時送七年級師生到沙家浜參加社會實踐活動,已知該中學租車的總費用不超過4600元. 求最多能租用多少輛A型號客車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點E為矩形ABCD外一點,連接AE,DE,且AE=DE,連接EB,EC分別與AD相交于點F,G.

(1)如圖1,求證:∠ABE=∠DCE;

(2)如圖2,若△BCE是等邊三角形,且AE=AB,在不添加任何輔助線的情況下,請直接寫出圖2中四對全等的鈍角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC.

(1)證明:BC=DE;

(2)若AC=12,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一種折疊椅,忽略其支架等的寬度,得到他的側(cè)面簡化結(jié)構(gòu)圖(圖2),支架與坐板均用線段表示,若座板DF平行于地面MN,前支撐架AB與后支撐架AC分別與座板DF交于點E、D,現(xiàn)測得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.
(1)求椅子的高度(即椅子的座板DF與地面MN之間的距離)(精確到1厘米)
(2)求椅子兩腳B、C之間的距離(精確到1厘米)(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)

查看答案和解析>>

同步練習冊答案