如圖5所示,P為⊙O外一點,PA、PB、AB都與⊙O相切,∠P=40°,則∠AOB的度數(shù)為_________.

 

【答案】

70°

【解析】∵∠P=40°,

∴∠PAB+∠PBA=140°,

根據(jù)切線的性質可得,所以∠AOB=70度

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1所示,直角梯形OABC的頂點A、C分別在y軸正半軸與x軸負半軸上.過點B、C作直線l.將直線l平移,平移后的直線l與x軸交于點D,與y軸交于點E.
(1)將直線l向右平移,設平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.
①求梯形上底AB的長及直角梯形OABC的面積,
②當2<t<4時,求S關于t的函數(shù)解析式;
(2)在第(1)題的條件下,當直線l向左或向右平移時(包括l與直線BC重合),在直線AB上是否存在點P,使△PDE為等腰直角三角形?若存在,請直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:等腰Rt△ABC中,∠A=90°,
(1)如圖1,E為AB上任意一點,以CE為斜邊作等腰Rt△CDE,連接AD,則有AD∥BC;
(2)若將等腰Rt△ABC改為正△ABC,如圖2所示,E為AB邊上任一點,△CDE為正三角形,連接AD,上述結論還成立嗎?答
 
;
(3)若△ABC為任意等腰三角形,AB=AC,如圖3,E為AB上任一點,△DEC∽△ABC,連接AD,請問AD與BC的位置關系怎樣?精英家教網(wǎng)答:
 

請你在上述3個結論中,任選一個結論進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在正方形ABCD中,AB=4cm,點E,F(xiàn),G,H分別是正方形的四條邊上的點,且AE=BF=CG=DH.如圖1所示.若把圖1中的四個直角三角形剪下來,拼成如圖2所示的面積為10cm2的正方形A1B1C1D1,則中間四邊形E1F1G1H1的面積等于
 
cm2
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1是三個邊長為2的正方形小方格,反比例函數(shù)y=
kx
經過正方形格點D,與小方格交于點E、點F,直線EF的解析式為y=mx+a.如圖2所示的△ABC為Rt△,∠B=90°,AB=10厘米,BC=a厘米.
(1)求反比例函數(shù)的解析式.
(2)求一次函數(shù)的解析式.
(3)已知點P從點A出發(fā)沿AB邊向點B以1厘米/秒的速度移動,點Q從點B出發(fā)沿BC邊向點C以2厘米/秒的速度移動,如果P、Q兩點同時出發(fā),幾秒種后,△BPQ的面積與是△ABC的面積一半?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•宜昌一模)如圖1,頂點為B(r,t+6),的拋物線y=ax2+bx+c過點A(0,6),t≠0,連接AB,P是線段AB上的動點,過點P作x軸的垂線(垂足為D),交拋物線y=ax2+bx+c于點C,設點P的橫坐標為m,AC、AB、BC圍成的圖形面積為S,點P,C之間的距離為d,s是m的二次函數(shù),圖象如圖2所示,Q為頂點,O,E為其與m軸的兩個交點.
(1)求s與m的函數(shù)關系;
(2)求r的值;
(3)求d與m函數(shù)關系式;
(4)求拋物線y=ax2+bx+c的表達式.

查看答案和解析>>

同步練習冊答案