(本題滿分12分)如圖,在Rt△ABC中,∠B=90°,AB=1,BC,以點C

為圓心,CB為半徑的弧交CA于點D;以點A為圓心,AD為半徑的弧交AB于點E

(1)求AE的長度;

(2)分別以點A、E為圓心,AB長為半徑畫弧,兩弧交于點FFCAB兩側(cè)),連接AF、EF,設(shè)EF交弧DE所在的圓于點G,連接AG,試猜想∠EAG的大小,并說明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

解:(1)在Rt△ABC中,由AB=1,BCAC

 ∵BCCD,AEAD

AEACAD

(2)∠EAG=36°,理由如下:

FAFEAB=1,AE

∴△FAE是黃金三角形

∴∠F=36°,∠AEF=72°

AEAGFAFE

∴∠FAE=∠FEA=∠AGE

∴△AEG∽△FEA

∴∠EAG=∠F=36°.

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,,.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運(yùn)動;同時點P以相同的速度,從點C沿折線C-D-A向點A運(yùn)動.當(dāng)點M到達(dá)點B時,兩點同時停止運(yùn)動.過點M作直線lAD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運(yùn)動的時間為t(秒).

(1)當(dāng)時,求線段的長;

(2)當(dāng)0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時,連接PQ交線段AC于點R.請?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個定值;若不是,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:解答題

(本題滿分12分)如圖,在邊長為2的正方形ABCD中,PAB的中點,Q為邊CD上一動點,設(shè)DQt(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點M、N,過QQEAB于點E,過MMFBC于點F
(1)當(dāng)t≠1時,求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市徐匯區(qū)中考一模數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖,的頂點A、B在二次函數(shù)的圖像上,又點A、B[分別在軸和軸上,ABO

1.(1)求此二次函數(shù)的解析式;(4分)

2.

 

 
(2)過點交上述函數(shù)圖像于點,

在上述函數(shù)圖像上,當(dāng)相似時,求點的坐標(biāo).(8分)

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題

(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點,與y軸交于B點,與直線交于A、D兩點。

⑴直接寫出A、C兩點坐標(biāo)和直線AD的解析式;

⑵如圖2,質(zhì)地均勻的正四面體骰子的各個面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點的縱坐標(biāo).則點落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(廣西桂林) 題型:解答題

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運(yùn)動;同時點P以相同的速度,從點C沿折線C-D-A向點A運(yùn)動.當(dāng)點M到達(dá)點B時,兩點同時停止運(yùn)動.過點M作直線lAD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運(yùn)動的時間為t(秒).

(1)當(dāng)時,求線段的長;

(2)當(dāng)0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時,連接PQ交線段AC于點R.請?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個定值;若不是,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案