【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于A(﹣2,m),B

4,﹣2)兩點(diǎn),與x軸交于C點(diǎn),過(guò)AAD⊥x軸于D

1)求這兩個(gè)函數(shù)的解析式:

2)求△ADC的面積.

【答案】1;y=x+2;(2SADC=8

【解析】

1)因?yàn)榉幢壤瘮?shù)過(guò)A、B兩點(diǎn),所以可求其解析式和m的值,從而知A點(diǎn)坐標(biāo),進(jìn)而求一次函數(shù)解析式.

2)先求出直線AB與與x軸的交點(diǎn)C的坐標(biāo),再根據(jù)三角形的面積公式求解即可.

解:(1反比例函數(shù)的圖象過(guò)B4,﹣2)點(diǎn),∴k=4×(﹣2=8

反比例函數(shù)的解析式為

反比例函數(shù)的圖象過(guò)點(diǎn)A(﹣2,m),∴A(﹣2,4).

一次函數(shù)y=ax+b的圖象過(guò)A(﹣2,4),B4,﹣2)兩點(diǎn),

,解得

一次函數(shù)的解析式為y=x+2;

2直線ABy=x+2x軸于點(diǎn)C∴C2,0).

∵AD⊥x軸于DA(﹣2,4),∴CD=2﹣(﹣2=4,AD=4

∴SADC=CDAD=×4×4=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)(如圖,轉(zhuǎn)盤(pán)被均勻分為20份),并規(guī)定:顧客每購(gòu)買(mǎi)200元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì).如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤(pán),那么可以直接獲得購(gòu)物券30元.

(1)求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)獲得購(gòu)物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤(pán)和直接獲得購(gòu)物券,你認(rèn)為哪種方式對(duì)顧客更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列從小到大,按某種規(guī)律排列的數(shù)如下:,3,7,,15,19,23,31,35,,,第為正整數(shù))個(gè)數(shù)記作,的函數(shù),則的值可能是下列個(gè)數(shù)中的( ).

A.158B.124C.79D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積(請(qǐng)?jiān)趫D1中探索);
(3)若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請(qǐng)直接判定此時(shí)四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo)(請(qǐng)?jiān)趫D2中探索).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,∠EAD∠BAF

(1)試說(shuō)明:△CEF為等腰三角形;

(2)猜測(cè)CECF的和與□ABCD的周長(zhǎng)有何關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列推理論證過(guò)程:

如圖,已知∠A=∠EDF,∠C=∠F,

求證:BCEF

證明:∵∠A=∠EDF

________________

∴∠C=∠BGD

又∵∠C=∠F 已知

_______=∠F(等量代換

BCEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D,E分別在邊BC,AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF,CF,連接BE并延長(zhǎng)交CF于點(diǎn)G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③SABC=SACF+SDCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 . (填寫(xiě)所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為D,拋物線y=ax2﹣10ax+c經(jīng)過(guò)點(diǎn)C,頂點(diǎn)M在直線BC上.

(1)證明四邊形ABCD是菱形,并求點(diǎn)D的坐標(biāo);
(2)求拋物線的對(duì)稱(chēng)軸和函數(shù)表達(dá)式;
(3)在拋物線上是否存在點(diǎn)P,使得△PBD與△PCD的面積相等?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+e與x軸交于點(diǎn)A(﹣3,0)、點(diǎn)B(9,0),與y軸交于點(diǎn)C,頂點(diǎn)為D,連接AD、DB,點(diǎn)P為線段AD上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,過(guò)點(diǎn)P作BD的平行線,交AB于點(diǎn)Q,連接DQ,設(shè)AQ=m,△PDQ的面積為S,求S關(guān)于m的函數(shù)解析式,以及S的最大值;

(3)如圖2,拋物線對(duì)稱(chēng)軸與x軸交與點(diǎn)G,E為OG的中點(diǎn),F(xiàn)為點(diǎn)C關(guān)于DG對(duì)稱(chēng)的對(duì)稱(chēng)點(diǎn),過(guò)點(diǎn)P分別作直線EF、DG的垂線,垂足為M、N,連接MN,直接寫(xiě)出△PMN為等腰三角形時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案