【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于A(﹣2,m),B
(4,﹣2)兩點(diǎn),與x軸交于C點(diǎn),過A作AD⊥x軸于D.
(1)求這兩個函數(shù)的解析式:
(2)求△ADC的面積.
【答案】(1);y=﹣x+2;(2)S△ADC=8
【解析】
(1)因?yàn)榉幢壤瘮?shù)過A、B兩點(diǎn),所以可求其解析式和m的值,從而知A點(diǎn)坐標(biāo),進(jìn)而求一次函數(shù)解析式.
(2)先求出直線AB與與x軸的交點(diǎn)C的坐標(biāo),再根據(jù)三角形的面積公式求解即可.
解:(1)∵反比例函數(shù)的圖象過B(4,﹣2)點(diǎn),∴k=4×(﹣2)=﹣8.
∴反比例函數(shù)的解析式為.
∵反比例函數(shù)的圖象過點(diǎn)A(﹣2,m),∴.∴A(﹣2,4).
∵一次函數(shù)y=ax+b的圖象過A(﹣2,4),B(4,﹣2)兩點(diǎn),
∴,解得.
∴一次函數(shù)的解析式為y=﹣x+2;
(2)∵直線AB:y=﹣x+2交x軸于點(diǎn)C,∴C(2,0).
∵AD⊥x軸于D,A(﹣2,4),∴CD=2﹣(﹣2)=4,AD=4.
∴S△ADC=CDAD=×4×4=8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)立了可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被均勻分為20份),并規(guī)定:顧客每購買200元的商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購物券30元.
(1)求轉(zhuǎn)動一次轉(zhuǎn)盤獲得購物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購物券,你認(rèn)為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列從小到大,按某種規(guī)律排列的數(shù)如下:,3,7,□,15,19,23,□,31,35,□,…,第(為正整數(shù))個數(shù)記作,是的函數(shù),則的值可能是下列個數(shù)中的( ).
A.158B.124C.79D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積(請?jiān)趫D1中探索);
(3)若點(diǎn)P,Q同時從A點(diǎn)出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運(yùn)動,其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,當(dāng)P,Q運(yùn)動到t秒時,△APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請直接判定此時四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo)(請?jiān)趫D2中探索).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,∠EAD=∠BAF
(1)試說明:△CEF為等腰三角形;
(2)猜測CE與CF的和與□ABCD的周長有何關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列推理論證過程:
如圖,已知∠A=∠EDF,∠C=∠F,
求證:BC∥EF
證明:∵∠A=∠EDF( )
∴________∥________( )
∴∠C=∠BGD( )
又∵∠C=∠F ( 已知 )
∴_______=∠F(等量代換 )
∴BC∥EF( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D,E分別在邊BC,AC上,且CD=CE,連接DE并延長至點(diǎn)F,使EF=AE,連接AF,CF,連接BE并延長交CF于點(diǎn)G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 . (填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點(diǎn)A的對應(yīng)點(diǎn)為D,拋物線y=ax2﹣10ax+c經(jīng)過點(diǎn)C,頂點(diǎn)M在直線BC上.
(1)證明四邊形ABCD是菱形,并求點(diǎn)D的坐標(biāo);
(2)求拋物線的對稱軸和函數(shù)表達(dá)式;
(3)在拋物線上是否存在點(diǎn)P,使得△PBD與△PCD的面積相等?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+e與x軸交于點(diǎn)A(﹣3,0)、點(diǎn)B(9,0),與y軸交于點(diǎn)C,頂點(diǎn)為D,連接AD、DB,點(diǎn)P為線段AD上一動點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,過點(diǎn)P作BD的平行線,交AB于點(diǎn)Q,連接DQ,設(shè)AQ=m,△PDQ的面積為S,求S關(guān)于m的函數(shù)解析式,以及S的最大值;
(3)如圖2,拋物線對稱軸與x軸交與點(diǎn)G,E為OG的中點(diǎn),F(xiàn)為點(diǎn)C關(guān)于DG對稱的對稱點(diǎn),過點(diǎn)P分別作直線EF、DG的垂線,垂足為M、N,連接MN,直接寫出△PMN為等腰三角形時點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com