【題目】如圖,在△ABC中,AB=AC,點M在BA的延長線上.
(1)按下列要求作圖,并在圖中標明相應(yīng)的字母.(保留作圖痕跡)
①作∠MAC的平分線AN;
②作AC的中點O,連結(jié)BO,并延長BO交AN于點D,連結(jié)CD;
(2)在(1)的條件下,判斷四邊形ABCD的形狀,并證明你的結(jié)論.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)作一個角的平分線和線段的垂直平分線可完成作圖;
(2)由AB=AC得∠ACB=∠ABC,由AN平分∠MAC得到∠MAN=∠CAN,則利用三角形外角的性質(zhì)可得到∠ACB=∠CAD,所以BC∥AD,于是可證明△BOC≌△DOA,得到BC=AD,然后根據(jù)平行四邊形的判定方法可判斷四邊形ABCD是平形四邊形.
(1)作∠MAC的角平分線AN,作AC的中垂線得到AC的中點O,連接BO,并延長BO交AN于點D,連接CD,如圖;
(2)四邊形ABCD是平形四邊形,理由如下:
∵AB=AC
∴∠ACB=∠ABC,
∵AN平分∠MAC,
∴∠MAN=∠CAN,
∵∠MAC=∠ABC+∠ACB,
∴∠ACB=∠CAD,
∴BC∥AD,
∵AC的中點是O
∴AO=CO,
在△BOC和△DOA中
∴△BOC≌△DOA,
∴BC=AD,
而BC∥AD,
∴四邊形ABCD是平形四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】某校在爭創(chuàng)“全國文明城市”活動中,組織全體學生參加了“創(chuàng)文”知識競賽,為了解各年級成績情況,學校這樣做的:
(收集數(shù)據(jù))從七、八、九三個年級的競賽成績中各隨機抽取了10名學生成績?nèi)缦卤恚?/span>
七年級 | 60 | 70 | 60 | 100 | 80 | 70 | 80 | 60 | 40 | 90 |
八年級 | 80 | 80 | 100 | 40 | 70 | 60 | 80 | 90 | 50 | 80 |
九年級 | 70 | 50 | 60 | 90 | 100 | 80 | 80 | 90 | 70 | 70 |
(整理、描述數(shù)據(jù))(說明:80≤x≤100為優(yōu)秀,60≤x<80為合格,40≤x<60為一般)
年級 | 40≤x<60 | 60≤x<80 | 80≤x≤100 |
七年級 | 1 | 5 | 4 |
八年級 | 2 | 2 | 6 |
九年級 | 1 | 4 | 5 |
年級 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
七年級 | a | 60 | 70 |
八年級 | 73 | b | 80 |
九年級 | 76 | 70 | c |
(分析數(shù)據(jù))三組樣本數(shù)據(jù)的平均分、眾數(shù)、中位數(shù)如上表所示,其中a= ,b= ,c= .
(得出結(jié)論)請你根據(jù)以上信息,推斷你認為成績好的年級,并說明理由(至少從兩個角度說明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了貫徹落實《關(guān)于開展全市義務(wù)教育學生體質(zhì)抽測工作的通知》精神,推進青少年茁壯成長工程,我市決定繼續(xù)開展市直初中生體質(zhì)抽測工作。我校初三某班被抽中,已知各人選測項目為下列選項中的任意一項:引體向上(男生)、仰臥起坐(女生)、立定跳遠(男、女生),坐位體前屈(男、女生)。
(1)男生小磊抽測引體向上的概率是 ;
(2)用樹狀圖或列表法求男生小磊與女生小銘恰好都抽測坐位體前屈的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“單詞的記憶效率”是指復習一定量的單詞,一周后能正確默寫出的單詞個數(shù)與復習的單詞個數(shù)的比值.右圖描述了某次單詞復習中四位同學的單詞記憶效率與復習的單詞個數(shù)的情況,則這四位同學在這次單詞復習中正確默寫出的單詞個數(shù)最多的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)
如圖,在□ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長為16,AE=4,求∠C的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某海監(jiān)船以20海里/小時的速度在某海域執(zhí)行巡航任務(wù),當海監(jiān)船由西向東航行至A處時,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達C處,此時海監(jiān)船與島嶼P之間的距離(即PC的長)為( 。
A. 40海里 B. 60海里 C. 20海里 D. 40海里
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是;
遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.
(1)求證:△ADB≌△AEC;
(2)若AD=2,BD=3,請計算線段CD的長;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.
(3)證明:△CEF是等邊三角形;
(4)若AE=4,CE=1,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,AB=AC=3,在△ABC內(nèi)作第一個內(nèi)接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內(nèi)作第二個內(nèi)接正方形HIKJ;再取線段KJ的中點Q,在△QHI內(nèi)作第三個內(nèi)接正方形…依次進行下去,則第2014個內(nèi)接正方形的邊長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線分別與x軸,y軸交于點,點C是第一象限內(nèi)的一點,且,拋物線經(jīng)過兩點,與x軸的另一交點為D.
(1)求此拋物線的解析式;
(2)判斷直線與的位置關(guān)系,并證明你的結(jié)論;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com