如圖,當點D移動到△ABC外時,AE、CE分別平分∠BAD、∠BCD,試探究∠E與∠α,∠β之間的關系.
考點:三角形內(nèi)角和定理,三角形的外角性質(zhì)
專題:
分析:在△ADG與△EGC中,β+γ+∠AGD=∠E+θ+∠EGC=180°,利用角相等得到β+γ=∠E+θ,同理在△EAF與△BFC中,可得到β-∠E=∠E-α,兩式相減,可得到結(jié)論.
解答:解:在△ADG與△EGC中,β+γ+∠AGD=∠E+θ+∠EGC=180°,
又因為∠AGD=∠EGC,
從而β+γ=∠E+θ①,
在△EAF與△BFC中,θ+∠AFE+∠E=α+γ+∠CFB=180°,
又因為∠AFE=∠CFB,
從而,θ+∠E=α+γ②,
①-②得β-∠E=∠E-α,
 2∠E=α+β,
∴∠E=
1
2
(α+β).
點評:本題主要考查三角形的內(nèi)角和定理,充分利用條件中的角相等是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知
3x+5y-1+a
+
5x+3y+2a
=
x-2009+y
×
2009-x-y
,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a、b為正數(shù),且a+b=4,求
a2+4
+
b2+9
的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD∥BC,AB=CD,M是BC的中點,N是AD的中點,AD=5,BC=13,∠B+∠C=90°,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知三條線段的長度分別是3、4、6,試寫出另一條線段,使這四條線段成為比例線段.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某次同學聚會互送禮品共420件,有多少同學參加聚會?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若a為正整數(shù),3xb-ayb與(a-2)xb-ay是同類項,則滿足條件的a有
 
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a2+b2=2a-2b-2,求a2+b2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

代數(shù)式a2-2a-6的最小值為
 

查看答案和解析>>

同步練習冊答案