【題目】如圖,在ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于 BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則所得四邊形ABEF是菱形. (Ⅰ)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;
(Ⅱ)若菱形ABEF的周長為16,AE=4 ,求∠C的大。
【答案】解:(Ⅰ)在△AEB和△AEF中, ,
∴△AEB≌△AEF,
∴∠EAB=∠EAF,
∵AD∥BC,
∴∠EAF=∠AEB=∠EAB,
∴BE=AB=AF.
∵AF∥BE,
∴四邊形ABEF是平行四邊形,
∵AB=BE,
∴四邊形ABEF是菱形;
(Ⅱ)如圖,連結(jié)BF,交AE于G.
∵菱形ABEF的周長為16,AE=4 ,
∴AB=BE=EF=AF=4,AG= AE=2 ,∠BAF=2∠BAE,AE⊥BF.
在直角△ABG中,∵∠AGB=90°,
∴cos∠BAG= = = ,
∴∠BAG=30°,
∴∠BAF=2∠BAE=60°.
∵四邊形ABCD是平行四邊形,
∴∠C=∠BAF=60°.
【解析】(Ⅰ)先證明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可證明; (Ⅱ)連結(jié)BF,交AE于G.根據(jù)菱形的性質(zhì)得出AB=4,AG= AE=2 ,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.再根據(jù)平行四邊形的對角相等即可求出∠C=∠BAF=60°.
【考點精析】本題主要考查了平行四邊形的性質(zhì)的相關(guān)知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】在一次食品安檢中,抽查某企業(yè) 10 袋奶粉,每袋取出 100 克,檢測每 100
克奶粉蛋白質(zhì)含量與規(guī)定每 100 克含量(蛋白質(zhì))比較,不足為負,超過為正, 記錄如下:(注:規(guī)定每 100g 奶粉蛋白質(zhì)含量為 15g)
﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5
(1)求平均每 100 克奶粉含蛋白質(zhì)為多少?
(2)每 100 克奶粉含蛋白質(zhì)不少于 14 克為合格,求合格率為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明跳起投籃,球出手時離地面 m,球出手后在空中沿拋物線路徑運動,并在距出手點水平距離4m處達到最高4m.已知籃筐中心距地面3m,與球出手時的水平距離為8m,建立如圖所示的平面直角坐標系.
(1)求此拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)此次投籃,球能否直接命中籃筐中心?若能,請說明理由;若不能,在出手的角度和力度都不變的情況下,球出手時距離地面多少米可使球直接命中籃筐中心?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形 )靠墻擺放,高 ,寬 ,小強身高 ,下半身 ,洗漱時下半身與地面成 ( ),身體前傾成 ( ),腳與洗漱臺距離 (點 , , , 在同一直線上).
(1)此時小強頭部 點與地面 相距多少?
(2)小強希望他的頭部 恰好在洗漱盆 的中點 的正上方,他應(yīng)向前或后退多少?
( , , ,結(jié)果精確到 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù) (為常數(shù),且)的圖像交于
兩點.
(1)求反比例函數(shù)的表達式;
(2)在軸上找一點,使的值最小,求滿足條件的點的坐標;
(3)在(2)的條件下求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,(1)∠B和∠FAC是什么位置關(guān)系的角?是哪兩條直線被哪一條直線所截形成的?
(2)∠C和∠DAC呢?∠C和∠FAC呢?
(3)∠B的同旁內(nèi)角分別是哪幾個角?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,正確的有( )
①Rt△ABC中,已知兩邊長分別為3和4,則第三邊長為5;
②有一個內(nèi)角等于其他兩個內(nèi)角和的三角形是直角三角形;
③三角形的三邊分別為a,b,C,若a2+c2=b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,則△ABC是直角三角形.
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格中,填入相應(yīng)的數(shù)字,使它符合下列語句的要求:
(1)5的正上方是一個負整數(shù);
(2)5的左上方是一個正分數(shù);
(3)一個既不是正數(shù)也不是負數(shù)的數(shù)在5的正下方;
(4)5的左邊是一個負分數(shù);
(5)剩下的四格請分別填上正數(shù)和負數(shù)使方格中正數(shù)與負數(shù)的個數(shù)相同.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【題目】如圖,兩個反比例函數(shù)C1:y=和C2:y=在第一象限內(nèi)的圖象如圖,P在C1上作PC、PD垂直于坐標軸,垂線與C2交點為A、B,則下列結(jié)論,其中正確的是( )
①△ODB與△OCA的面積相等;②四邊形PAOB的面積等于k1- k2;③PA與PB始終相等;④當點A是PC的中點時,點B一定是PD的中點
A. ①② B. ②④ C. ①②④ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com