精英家教網 > 初中數學 > 題目詳情
已知拋物線的頂點坐標為P(2,-1),它的圖象經過點C(0,3).
(1)求該拋物線的解析式.
(2)設該拋物線的圖象與x軸交于A、B兩點,求△ABC的面積.
分析:(1)設該拋物線方程為y=k(x-2)2-1,然后將點(3,0)代入即可求得k的值;
(2)令y=0,求出拋物線與x軸的交點坐標,然后根據三角形的面積公式列式進行計算即可求解.
解答:解:(1)∵拋物線的頂點坐標為P(2,-1),
∴設該拋物線方程為y=k(x-2)2-1,(k≠0);
又∵它的圖象經過點C(0,3),
∴3=k(0-2)2-1,
解得,k=1,
∴該拋物線的解析式為y=(x-2)2-1=x2-4x+3,即y=x2-4x+3;

(2)令y=0,則x2-4x+3=0,
解得x1=1,x2=3,
S=
1
2
×(3-1)×3=3.
所以拋物線與兩坐標軸的三個交點所圍成的三角形的面積為3.
點評:本題考查了待定系數法求二次函數解析式以及拋物線與坐標軸的交點的求解方法,利用頂點式解析式求解是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

17、已知拋物線的頂點坐標為M(1,-2),且經過點N(2,3),求此二次函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,已知拋物線的頂點坐標是M(1,2),并且經過點C精英家教網(0,3),拋物線與直線x=2交于點P,
(1)求拋物線的函數解析式;
(2)在直線上取點A(2,5),求△PAM的面積;
(3)拋物線上是否存在點Q,使△QAM的面積與△PAM的面積相等?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線的頂點坐標為M(1,4),且經過點N(2,3),與x軸交于A、B兩點(點A在點B左側),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標;
(2)若直線y=kx+t經過C、M兩點,且與x軸交于點D,探索并判斷四邊形CDAN是怎樣的四邊形?并對你得到的結論予以證明;
(3)直線y=mx+2與拋物線交于T,Q兩點.是否存在這樣的實數m,使以線段TQ為直徑的圓恰好過坐標原點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•北塘區(qū)一模)已知拋物線的頂點坐標為(
5
2
,-
27
16
)
,且經過點C(1,0),若此拋物線與x軸的另一交點為點B,與y軸的交點為點A,設P、Q分別為AB、OB邊上的動點,它們同時分別從點A、O向B點勻速運動,速度均為每秒1個單位,設P、Q移動時間為t(0≤t≤4)
(1)求此拋物線的解析式并求出P點的坐標(用t表示);
(2)當△OPQ面積最大時求△OBP的面積;
(3)當t為何值時,△OPQ為直角三角形?
(4)△OPQ是否可能為等邊三角形?若可能請求出t的值;若不可能請說明理由,并改變點Q的運動速度,使△OPQ為等邊三角形,求出此時Q點運動的速度和此時t的值.

查看答案和解析>>

同步練習冊答案