(2009•慶陽(yáng))如圖,兩個(gè)等圓⊙O與⊙O′外切,過點(diǎn)O作⊙O′的兩條切線OA、OB,A、B是切點(diǎn),則∠AOB=    度.
【答案】分析:根據(jù)切線的性質(zhì)得O′A⊥OA,再解直角三角形即可.
解答:解:連接OO′和O′A,
根據(jù)切線的性質(zhì),得O′A⊥OA,
根據(jù)題意得OO′=2O′A,
則∠AOO′=30°,
再根據(jù)切線長(zhǎng)定理得∠AOB=2∠AOO′=60°.
故答案是:60.
點(diǎn)評(píng):本題綜合運(yùn)用了切線的性質(zhì)定理、切線長(zhǎng)定理以及借助銳角三角函數(shù)進(jìn)行解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•慶陽(yáng))如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(-1,0),點(diǎn)B在拋物線y=ax2+ax-2上
(1)點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)拋物線的關(guān)系式為______;
(3)設(shè)(2)中拋物線的頂點(diǎn)為D,求△DBC的面積;
(4)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°,到達(dá)△AB′C″的位置.請(qǐng)判斷點(diǎn)B′、C″是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷23(靖江初中 鄭波)(解析版) 題型:填空題

(2009•慶陽(yáng))如圖,正方形OEFG和正方形ABCD是位似形,點(diǎn)F的坐標(biāo)為(1,1),點(diǎn)C的坐標(biāo)為(4,2),則這兩個(gè)正方形位似中心的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年甘肅省慶陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•慶陽(yáng))如圖,正方形OEFG和正方形ABCD是位似形,點(diǎn)F的坐標(biāo)為(1,1),點(diǎn)C的坐標(biāo)為(4,2),則這兩個(gè)正方形位似中心的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年甘肅省慶陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•慶陽(yáng))如圖,從地面垂直向上拋出一小球,小球的高度h(單位:米)與小球運(yùn)動(dòng)時(shí)間t(單位:秒)的函數(shù)關(guān)系式是h=9.8t-4.9t2,那么小球運(yùn)動(dòng)中的最大高度h最大=    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年浙江省臺(tái)州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•慶陽(yáng))如圖,從地面垂直向上拋出一小球,小球的高度h(單位:米)與小球運(yùn)動(dòng)時(shí)間t(單位:秒)的函數(shù)關(guān)系式是h=9.8t-4.9t2,那么小球運(yùn)動(dòng)中的最大高度h最大=    米.

查看答案和解析>>

同步練習(xí)冊(cè)答案