【題目】如圖,在平面直角坐標系中,坐標原點O是菱形ABCD的對稱中心.邊AB與x軸平行,點B(1,-2),反比例函數(shù) (k≠0)的圖象經(jīng)過A,C兩點.
(1)求點C的坐標及反比例函數(shù)的解析式.
(2)直線BC與反比例函數(shù)圖象的另一交點為E,求以O,C,E為頂點的三角形的面積.
【答案】
(1)解:連結AC,BD,
∵坐標原點O是菱形ABCD的對稱中心,
∴AC,BD相交于點O,
且∠AOB=90°,
∵B(1,﹣2),且AB∥x軸,
∴設A(a,﹣2),則AO2=a2+4,BO2=5,AB2=(1﹣a)2 ,
在Rt△AOB中,由勾股定理得(1﹣a)2=a2+4+5,解得a=﹣4,
∴A(﹣4,﹣2),∴C(4,2),
∵反比例函數(shù) (k≠0)的圖象經(jīng)過A,C兩點,
∴反比例函數(shù)解析式為 ;
(2)解:連結OE,則△OCE是以O,C,E為頂點的三角形,設直線BC的解析式為y=kx+b,
∵點B(1,﹣2),C(4,2)在該直線上,
∴ ,解得: ,
∴直線BC的解析式為 ,設其與y軸交于點F(0, ),
∵反比例函數(shù)為 ,∴ ,解得x1=4,x2= ,
∴點E的橫坐標為 ,
∴以O,C,E為頂點的三角形的面積= = .
【解析】(1)連結AC,BD,根據(jù)坐標原點O是菱形ABCD的對稱中心,可得AC,BD相交于點O,根據(jù)菱形的性質得出∠AOB=90°,根據(jù)B(1,-2),且AB∥x軸,可設A(a,-2),則AO2=a2+4,BO2=5,AB2=(1-a)2 , 在Rt△AOB中,由勾股定理可得點A、C的坐標,再根據(jù)待定系數(shù)法可求反比例函數(shù)解析式。
(2)連結OE,則△OCE是以O,C,E為頂點的三角形,利用待定系數(shù)法求出直線BC的函數(shù)解析式,再求出直線BC與y軸的交點坐標,然后將反比例函數(shù)和直線BC聯(lián)立方程組,求解得出點E的坐標,再根據(jù)三角形的面積公式計算即可得出答案。
【考點精析】本題主要考查了確定一次函數(shù)的表達式和勾股定理的概念的相關知識點,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】某開發(fā)公司生產(chǎn)的 960 件新產(chǎn)品需要精加工后,才能投放市場,現(xiàn)甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用 20 天,而甲工廠每天加工的數(shù)量是乙工廠每天加工的數(shù)量的,公司需付甲工廠加工費用為每天 80 元,乙工廠加工費用為每天 120 元.
(1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?
(2)公司制定產(chǎn)品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家合作完成.在加工過程中,公司派一名工程師每天到廠進行技術指導,并負擔每天 15 元的午餐補助費, 請你幫公司選擇一種既省時又省錢的加工方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在“漢字聽寫”大賽中,準備一次性購買若干鋼筆和筆記本(每支鋼筆的價格相同,每本筆記本的價格相同)作為優(yōu)勝者的獎品,已知購買3支鋼筆和4本筆記本共需88元,購買4支鋼筆和5本筆記本共需114元.
(1)求購買一支鋼筆和一本筆記本各需多少元?
(2)學校準備購買鋼筆和筆記本共80件獎品,根據(jù)規(guī)定購買的總費用不能超過1200元,求最多可以購買多少支鋼筆?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB的中點,連接DE、CE.
(1)求證:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在中,,過上一點作交于點,以為頂點,為一邊,作,另一邊交于點.
(1)求證:四邊形為平行四邊形;
(2)當點為中點時,的形狀為 ;
(3)延長圖①中的到點使連接得到圖②,若判斷四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為⊙O的內(nèi)接四邊形.延長AB與DC相交于點G,AO⊥CD,垂足為E,連接BD,∠GBC=50°,則∠DBC的度數(shù)為( )
A.50°
B.60°
C.80°
D.90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com