【題目】如圖,矩形ABCD中,對角ACBD交于點OE,F分別是邊BCAD的中點,AB2,BC4,一動點P從點B出發(fā),沿著BADC在矩形的邊上運動,運動到點C停止,點M為圖1中某一定點,設點P運動的路程為x,△BPM的面積為y,表示yx的函數(shù)關系的圖象大致如圖2所示.則點M的位置可能是圖1中的( 。

A. CB. OC. ED. F

【答案】B

【解析】

從圖2中可看出當x6時,此時BPM的面積為0,說明點M一定在BD上,選項中只有點OBD上,所以點M的位置可能是圖1中的點O

解:AB2BC4,四邊形ABCD是矩形,

x6時,點P到達D點,此時BPM的面積為0,說明點M一定在BD上,

從選項中可得只有O點符合,所以點M的位置可能是圖1中的點O

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線經過A,B,C三點.

(1)求拋物線的解析式。

(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為mAMB的面積為S.求S關于m的函數(shù)關系式,并求出S的最大值.

(3)若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能夠使得點P、QB、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、 F分別為邊AB、CD的中點,BD是對角線.過點有作AGDBCB的延長線于點G.

(1)求證:△ADE≌△CBF;

(2)若∠G=90° ,求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知點A(﹣4,8)和點B(2,n)在拋物線y=ax2上.

(1)求a的值及點B關于x軸對稱點P的坐標并在x軸上找一點Q,使得AQ+QB最短求出點Q的坐標;

(2)平移拋物線y=ax2記平移后點A的對應點為A′,B的對應點為B′,C(﹣2,0)和點D(﹣4,0)是x軸上的兩個定點.

當拋物線向左平移到某個位置時,AC+CB最短,求此時拋物線的函數(shù)解析式;

當拋物線向左或向右平移時,是否存在某個位置使四邊形ABCD的周長最短?若存在求出此時拋物線的函數(shù)解析式;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把邊長為1的正方形ABCD繞頂點A逆時針旋轉30°到正方形AB′C′D′,則它們的公共部分的面積等于_____

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923101670465536/1923902127538176/STEM/3534c7f6f1a5489684ae6308493b71da.png]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AFBE.試判斷四邊形AFBE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】貨輪上卸下若干只箱子,其總重量為10t,每只箱子的重量不超過1t,為保證能把這些箱子一次運走,問至少需要多少輛載重3t的汽車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面的點陣圖和相應的等式,探究其中的規(guī)律:

1)在④和⑤后面的橫線上分別寫出相應的等式;

2)試用含有n的式子表示第n個等式:   ;(n為正整數(shù))

3)請用上述規(guī)律計算:

1+3+5+…+49

101+103+105+…+197+199

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知兩個多項式A=9xy7xyx2,B=3xy5xyx7

1)求A3B;

2)若要使A3B的值與x的取值無關,試求y的值;

查看答案和解析>>

同步練習冊答案