探究

如圖①,在□ABCD的形外分別作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,連結(jié)AC、EF.在圖中找一個(gè)與△FAE全等的三角形,并說明理由.(5分)

應(yīng)用以□ABCD的四條邊為邊,在其形外分別作正方形,如圖②,連結(jié)EF、GH、IJ、KL.若圖中陰影部分四個(gè)三角形的面積和為12,則□ABCD的面積為          .(3分)

 

【答案】

(1) △FAE全等于△ABC,理由見解析(2)6

【解析】(1) ∵△ABF和△ADE都為等腰直角三角形,

∴AF=AB,AE=AD.

又∵四邊形ABCD中,AB//CD,并且AB=CD,

∴四邊形ABCD為平行四邊形,AE=AD=BC.

而∠FAE=360°-90°-90°-∠BAD=180°-∠BAD=∠ABC,

∴△FAE全等于△ABC   

(2)□ABCD的面積為6

 (1)根據(jù)全等三角形的判定求證(2) 連接BD,證得∴⊿DAB≌⊿HBG,同理⊿BCD≌⊿LDK,可得⊿DKL、⊿GBH兩個(gè)陰影三角形面積之和等于平行四邊形ABCD面積,同樣⊿EFA、⊿CGI兩個(gè)陰影三角形面積之和等于平行四邊形ABCD面積,即可求得□ABCD的面積

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問題:如圖1,點(diǎn)A,B在直線l的同側(cè),在直線l上找一點(diǎn)P,使得AP+BP的值最小.
小明的思路是:如圖2,作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B,則A′B與直線l的交點(diǎn)P即為所求.
精英家教網(wǎng)
請(qǐng)你參考小明同學(xué)的思路,探究并解決下列問題:
(1)如圖3,在圖2的基礎(chǔ)上,設(shè)AA′與直線l的交點(diǎn)為C,過點(diǎn)B作BD⊥l,垂足為D.若CP=1,PD=2,AC=1,寫出AP+BP的值;
(2)將(1)中的條件“AC=1”去掉,換成“BD=4-AC”,其它條件不變,寫出此時(shí)AP+BP的值;
(3)請(qǐng)結(jié)合圖形,直接寫出
(2m-3)2+1
+
(8-2m)2+4
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,-2),點(diǎn)B的坐標(biāo)為(3,-1),二次函數(shù)y=-x2的圖象為l1
(1)平移拋物線l1,使平移后的拋物線過點(diǎn)A,但不過點(diǎn)B,寫出平移后的拋物線的一個(gè)解析式(任寫一個(gè)即可);
(2)平移拋物線l1,使平移后的拋物線過A、B兩點(diǎn),記拋物線為l2,如圖2,求拋物線l2的函數(shù)解析式及頂點(diǎn)C的坐標(biāo);
(3)設(shè)P為y軸上一點(diǎn),且S△ABC=S△ABP,求點(diǎn)P的坐標(biāo);
(4)請(qǐng)?jiān)趫D2上用尺規(guī)作圖的方式探究拋物線l2上是否存在點(diǎn)Q,使△QAB為等腰三角形?若存在,請(qǐng)判斷點(diǎn)Q共有幾個(gè)可能的位置(保留作圖痕跡);若不存在,請(qǐng)說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,分別以AB、AC為底邊向△ABC的外側(cè)作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.試探究線段FD、FE的數(shù)量關(guān)系,并加以證明.
說明:如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,可以從圖2、3中選取一個(gè),并分別補(bǔ)充條件∠CAB=45°、∠CAB=30°后,再完成你的證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明數(shù)學(xué)成績(jī)優(yōu)秀,他平時(shí)善于總結(jié),并把總結(jié)出的結(jié)果靈活運(yùn)用到做題中是他成功的經(jīng)驗(yàn)之一,例如,總結(jié)出“依次連接任意一個(gè)四邊形各邊中點(diǎn)所得四邊形(即原四邊形的中點(diǎn)四邊形)一定是平行四邊形”后,他想到曾經(jīng)做過的這樣一道題:如圖1,點(diǎn)P是線段AB的中點(diǎn),分別以AP和BP為邊在線段AB的同側(cè)作等邊三角形APC和等邊三角形BPD,連接AD和BC,他想到了四邊形ABDC的中點(diǎn)四邊形一定是菱形.于是,他又進(jìn)一步探究:
如圖2,若P是線段AB上任一點(diǎn),在AB的同側(cè)作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,連接CD,設(shè)點(diǎn)E,F(xiàn),G,H分別是AC,AB,BD,CD的中點(diǎn),順次連接E,F(xiàn),G,H.請(qǐng)你接著往下解決三個(gè)問題:
(1)猜想四邊形ABCD的中點(diǎn)四邊形EFGH的形狀,直接回答
 
,不必說明理由;
(2)當(dāng)點(diǎn)P在線段AB的上方時(shí),如圖3,在△APB的外部作△APC和△BPD,其它條件不變,(1)中結(jié)論還成立嗎?說明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其它條件不變,先補(bǔ)全圖4,再判斷四邊形EFGH的形狀,并說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年河北省畢業(yè)生結(jié)課小模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

提出問題

如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.

類比探究

如圖2,在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說明理由.

拓展延伸

如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案