【題目】平陽中學(xué)長方形足球場的周長為310米,長比寬多25米,問這個(gè)足球場的長和寬分別是多少米?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明某一命題的結(jié)論“a<b”時(shí),應(yīng)假設(shè)( 。
A.a>b
B.a≥b
C.a=b
D.a≤b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校計(jì)算機(jī)考試情況,抽取了50名學(xué)生的計(jì)算機(jī)考試成績進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表所示,則50名學(xué)生計(jì)算機(jī)考試成績的眾數(shù)、中位數(shù)分別為( )
考試分?jǐn)?shù)(分) | 20 | 16 | 12 | 8 |
人數(shù) | 24 | 18 | 5 | 3 |
A. 20,16B. l6,20C. 20,l2D. 16,l2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)多邊形內(nèi)角和等于1260°,則該多邊形邊數(shù)是( )
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形:正三角形、平行四邊形、矩形、菱形、正方形、等腰梯形、直角梯形、圓,其中既是中心對稱圖形,又是軸對稱圖形的共有( )
A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用﹣1來表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:
∵22<()2<32,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為(﹣2).
請解答:
(1)的整數(shù)部分是 ,小數(shù)部分是
(2)如果的小數(shù)部分為a, 的整數(shù)部分為b,求a+b﹣的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級1班甲、乙兩個(gè)小組的14名同學(xué)身高(單位:厘米)如下:
甲組 | 158 | 159 | 160 | 160 | 160 | 161 | 169 |
乙組 | 158 | 159 | 160 | 161 | 161 | 163 | 165 |
以下敘述錯(cuò)誤的是( )
A. 甲組同學(xué)身高的眾數(shù)是160 B. 乙組同學(xué)身高的中位數(shù)是161
C. 甲組同學(xué)身高的平均數(shù)是161 D. 兩組相比,乙組同學(xué)身高的方差大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向A點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成以下證明,并在括號內(nèi)填寫理由.
已知:如圖所示,∠1=∠2,∠A=∠3.
求證:∠ABC+∠4+∠D=180°.
證明:∵∠1=∠2
∴ ∥ ( )
∴∠A=∠4( )
∠ABC+∠BCE=180°( )
即∠ABC+∠ACB+∠4=180°
∵∠A=∠3
∴∠3=
∴ ∥
∴∠ACB=∠D( )
∴∠ABC+∠4+∠D=180°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com